что такое гомология гомологи
Гомологический ряд — определение, общая формула и примеры для разных классов соединений
При изучении органической химии, отличающейся сложностью своих закономерностей, первое и основное, что следует понять — свойства и законы гомологических рядов.
Гомология, гомологи, гомологический ряд — определения и примеры
Гомология — химическое явление, при котором соединения отличаются друг от друга на определённое количество групп, обладают сходной характеристикой и проявляют похожие свойства.
Гомологический ряд — последовательность однотипных органических соединений, каждое из последующих имеет с предыдущим определённую гомологическую разность. При этом свойства веществ, состоящих в рядах, то есть гомологов, изменяются с определённой закономерностью.
Например, если говорить о гомологическом ряде алкинов, он состоит из следующих гомологов:
пентин — C5H8 и т. д.
Гомологический ряд алканов в таблице
Алканы — ациклические предельные углеводороды:
всеобщая формула алканов — СnH2n+2;
Алканы обладают следующими свойствами:
в последовательности гомологического ряда происходят изменения агрегатных состояний веществ с газообразного на жидкое и на твёрдое;
нерастворимы в воде, но могут растворяться в неполярных растворителях;
используются в промышленности (метан — топливо, пропан — автомобильное топливо, бутан — сырье для производства каучука, пропан и бутан — балонные газы).
При изучении алканов стоит обращать внимание на их изомеры. Например, структурным изомером бутана является метилпропан, а пентана — метилбутан.
Алканы могут вступать в следующие реакции:
Горение в кислороде: СН4 + 2О2 = СО2 + 2Н2О.
Замещение с галогенами: CH4 + Cl2 = CH3Cl + HСl.
Разложение при высокой температуре: СН4 = C + 2H2.
Гомологический ряд алкенов в таблице
Алкены — углеводороды, имеющие ациклический непредельный характер.
Алкены обладают следующими свойствами:
не способны растворяться в воде, но полностью растворяются при взаимодействии с органическими растворителями;
имеют очень высокую температуру плавления и кипения;
применяются в промышленности для синтеза таких важных соединений, как фенола, полипропилена, стирола, ацетона, глицерина и других.
Алкены участвуют в следующих химических реакциях:
Горение в кислороде: C2H4 + 3O2 = 2CO2 + H2O.
Галогенирование (присоединение к галогенам): CH2=CH2 + Cl2 = Cl-CH2-CH2-Cl.
Присоединение к водороду (гидрирование): CH2=CH-CH3 + H2 = CH3-CH2-CH3.
Гидратация (присоединение к воде): CH2=CH2 + H2O = CH3-CH2OH.
Полимеризация: nCH2=CH2 = (-CH2-CH2-) * n.
Гомологический ряд альдегидов
Делятся на насыщенные и алифатические насыщенные, общая молекулярная формула первых — СnH2nO, вторых — СnH2n+1CHO соответственно.
К примерам альдегидов относятся метаналь, этаналь, пропаналь, бутаналь, пентаналь, гексаналь и так далее.
Альдегиды принимают участие в следующих реакциях:
Присоединение воды: R-CH = O + H2O = R-CH(OH)-OH.
Присоединение спиртов: CH3-CH = O + C2H5OH = CH3-CH(OH)-O-C2H5.
Присоединение аминов: C6H5CH = O + H2NC6H5 = C6H5CH = NC6H5 + H2O.
Восстановление водородом: R-CH = O + H2 = R—CH2-OH.
Альдегиды обладают следующими свойствами:
низшие представители класса имеют резкий запах;
в гомологическом ряду происходит изменение агрегатных состояний от жидкого до твёрдого;
используются в лекарственной промышленности, парфюмерии и т. д.
Хоть органическая химия и требует внимательного изучения, совсем необязательно полностью зазубривать все классы веществ. Намного проще для понимания и качественного запоминания обращать внимание именно на закономерности изменения свойств и характеристик ближайших соединений, следуя плану.
Например, если говорить о гомологическом ряде алкинов, он состоит из следующих гомологов:
Гомологический ряд алканов в таблице
Алканы обладают следующими свойствами:
в последовательности гомологического ряда происходят изменения агрегатных состояний веществ с газообразного на жидкое и на твёрдое;
нерастворимы в воде, но могут растворяться в неполярных растворителях;
Алканы могут вступать в следующие реакции:
Замещение с галогенами: CH4 + Cl2 = CH3Cl + HСl.
Разложение при высокой температуре: СН4 = C + 2H2.
Гомологический ряд алкенов в таблице
Алкены обладают следующими свойствами:
не способны растворяться в воде, но полностью растворяются при взаимодействии с органическими растворителями;
имеют очень высокую температуру плавления и кипения;
применяются в промышленности для синтеза таких важных соединений, как фенола, полипропилена, стирола, ацетона, глицерина и других.
Алкены участвуют в следующих химических реакциях:
Галогенирование (присоединение к галогенам): CH2=CH2 + Cl2 = Cl-CH2-CH2-Cl.
Гомологический ряд альдегидов
К примерам альдегидов относятся метаналь, этаналь, пропаналь, бутаналь, пентаналь, гексаналь и так далее.
Альдегиды принимают участие в следующих реакциях:
Присоединение воды: R-CH = O + H2O = R-CH(OH)-OH.
Восстановление водородом: R-CH = O + H2 = R—CH2-OH.
Альдегиды обладают следующими свойствами:
низшие представители класса имеют резкий запах;
в гомологическом ряду происходит изменение агрегатных состояний от жидкого до твёрдого;
используются в лекарственной промышленности, парфюмерии и т. д.
Хоть органическая химия и требует внимательного изучения, совсем необязательно полностью зазубривать все классы веществ. Намного проще для понимания и качественного запоминания обращать внимание именно на закономерности изменения свойств и характеристик ближайших соединений, следуя плану.
Гомологи. Гомологический ряд
Урок 5. Химия 10 класс (ФГОС)
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Гомологи. Гомологический ряд»
Гомологи – это вещества близкие по строению и свойствам, которые отличаются на одну или несколько групп – СН2.
Каждый класс органических соединений имеет свою общую формулу и для каждого класса органических соединений можно составить их гомологический ряд.
Например, алканы имеют общую формулу CnH2n+2, где n – число атомов углерода, причём каждый член гомологического ряда будет отличаться от предыдущего на группу – СН2. Такая последовательность соединений называется гомологическим рядом (от греческого homolog – «сходный»), отдельные члены этого ряда называются гомологами, а группа атомов, на которую отличаются соседние гомологи (группа – СН2) – гомологической разностью.
Понятно, что гомологи отличаются молярной массой, а значит физическими свойствами. Как правило, с увеличение числа атомов углерода в молекуле увеличиваются температуры кипения и плавления, увеличивается плотность.
Для алкенов характерна общая формула СnH2n. Первый член гомологического ряда имеет формулу С2Н4 и называется этен, второй представитель алкенов – пропен – С3Н6, третий – бутен-1,четвёртый – пентен-1. И так далее, то есть в данном гомологическом ряду также каждый последующий член гомологического ряда отличается от предыдущего на группу – СН2.
Для алкинов также можно составить гомологический ряд. Общая формула алкинов – СnH2n-2, поэтому первым представителем этого ряда будет этин, али ацетилен – С2Н2, вторым членом ряда является пропин – С3Н4, третим – бутин-1 – С4Н6, четвёртым – пентин-1 – С5Н8.
Составим гомологический ряд альдегидов. Учитывая, что общая формула альдегидов СnH2n+1CHO, то первым представителем данного гомологического ряда будет метаналь, или муравьиный альдегид – НСОН, вторым членом ряда – этаналь, или уксусный альдегид – СН3СНО, третьим – пропаналь, или пропионовый альдегид – СН3СН2СНО, четвёртым – бутаналь, или масляный альдегид – СН3СН2СН2СНО и так далее.
Аналогично и для карбоновых кислот. Так, общая формула насыщенных одноосновных карбоновых кислот – CnH2n+1COOH. Поэтому первым представителем данного гомологического ряда является метановая кислота, или муравьиная – НСООН, вторым – этановая кислота, или уксусная – СН3СООН, третьим – пропановая, или пропионовая кислота – СН3СН2СООН, четвёртым – бутановая, или масляная кислота – СН3СН2СН2СООН, пятым – пентановая, или валериановая кислота – СН3СН2СН2СН2СООН.
Таким образом, для каждого класса органических соединений можно составить гомологический ряд, учитывая общую формулу данного класса. Каждый последующий член гомологического ряда отличается от предыдущего на группу – СН2, которую называют гомологической разность. А сами вещества этого ряда называются гомологами. Как правило, с увеличением числа атомов углерода в гомологическом ряду увеличиваются температуры плавления и кипения, увеличивается плотность.
Гомологи
Органические вещества разных классов тесно взаимосвязаны.
Соединения, содержащие одинаковые функциональные свойства, проявляют схожие химические и физические свойства.
Вещества, которые содержат одинаковые функциональные группы, имеют сходное строение, но отличаются друг от друга на одну или несколько групп –СH2–, образуют гомологический ряд. |
Гомологи – это вещества, которые входят в один и тот же гомологический ряд. |
Группу –СH2– называют гомологической разностью.
Например, 2-метилбутан и 2-метилпентан являются гомологами: | |
Добавить комментарий Отменить ответ
Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.
Гомология (биология)
Гомологичными (др.-греч. ὅμοιος — подобный, похожий; λογος — слово, закон) в биологии называют сопоставимые части сравниваемых биологических объектов.
Содержание
Терминология
В биологии понятие гомологии используется в сравнительной анатомии (см., например, Список гомологичных органов репродуктивной системы человека) с середины XIX века, и — в ревизованном виде — в сравнительных исследованиях генома. В рамках эволюционной биологии гомология интерпретируется как сходство, обусловленное происхождением от общего предка. В некотором смысле противоположным по значению термином, применяемым в тех случаях, когда два сходных органа или гена не имеют общего предшественника, является аналогия.
Кроме того, понятие гомологии используется в родственном, но несколько ином значении, в работах Н. И. Вавилова и более поздних авторов о законе гомологических рядов в наследственной изменчивости.
Гомология в сравнительной анатомии
История понятия
«…a part or organ in one animal that has the same function as another part or organ in a different animal…»
[часть или орган животного, который имеет ту же самую функцию, что и другая часть или орган у иного животного]
и гомологичные структуры:
«the same organ in different animals under every variety of form and function…»
[тот же самый орган у различных животных при всех вариациях формы и функции] [4]
Примерами аналогичных структур могут служить крылья насекомых и птиц. Примерами гомологичных — крыло птицы и рука человека. С понятием гомологии Оуэн связывал понятие архетипа или плана строения. Путем сопоставления скелетов Оуэн реконструировал архетип позвоночного и архетипы каждого из признанных на тот момент классов позвоночных животных (рыб, рептилий, птиц и млекопитающих). Скелеты конкретных позвоночных он рассматривал как реальные воплощения этих архетипов. По его примеру Томас Хаксли реконструировал архетип (план строения) моллюсков. Поиск планов строения для разных групп животных и растений стал одной из важнейших задач сравнительной анатомии второй половины XIX века.
Со становлением эволюционного учения, начиная с работ Чарльза Дарвина, понятия гомологии и архетипа были переинтерпретированы. Гомологичные органы стали считать органами, унаследованными от общего предка, а архетип стали рассматривать как гипотетического общего предка группы, для которой он реконструирован. [5]
Следует отметить, что ещё до работ Оуэна предпринимались попытки формализовать процедуру сравнения живых существ и выработать общие принципы сравнительной анатомии. Так, Этьен Жоффруа Сент-Илер в своей работе Анатомическая философия развивал теорию аналогов и сформулировал закон коннексий. Отталкиваясь от учения Аристотеля об аналогиях, он пытался придать понятию аналога большую строгость, найти критерии и параметры сравнения, предложив называть так органы, которые занимают сходное положение относительно других органов у сравниваемых организмов. На основе этой теории он, по сути, одним из первых приступил к установлению гомологий. В своих построениях Э. Жоффруа Сент-Илер нередко увлекался (например, он утверждал, что в основе организации членистоногих и позвоночных лежит общий план строения, только у членистоногих внутренности находятся внутри, а не снаружи от позвоночника). Его ученики также развивали идеи о единстве плана строения всех животных, в том числе, моллюсков и позвоночных, что послужило одним из поводов к знаменитой дискуссии между Э. Жоффруа Сент-Илером и Жоржем Кювье (1830).
К предшественникам Оуэна можно отнести и Иоганна Вольфганга Гёте — не только поэта, но и естествоиспытателя, а также ряд анатомов конца XVIII — начала XIX века, занимавшихся сходными проблемами. В частности, Гёте, благодаря сравнительным исследованиям черепа позвоночных, обнаружил в черепе человека части, соответствующие межчелюстной кости (до этого её отсутствие считалось важным отличием человека от животных).
Другой важной темой в ранних исследованиях в области установления гомологий у позвоночных (от Гёте и Жоффруа Сент-Илера до Оуэна) стала позвоночная теория черепа, согласно которой череп позвоночных представляет собой продукт слияния нескольких позвонков. Несмотря на то, что эта теория позднее была окончательно отброшена (это произошло в конце XIX века), она имела значительную эвристическую ценность. Например, современные представления о том, что голова насекомых состоит из нескольких сросшихся между собой сегментов, берут свое начало от работ начала XIX века, выполненных учениками Жоффруа Сент-Илера, которые пытались распространить позвоночную теорию черепа за пределы позвоночных.
Критерии гомологии по Ремане
Другие критерии гомологии
Разными авторами предлагались и другие критерии гомологии, в том числе
Родственные и производные понятия
Олигомеризация гомологичных (гомодинамных) органов
Принцип множественной закладки новообразующихся органов Догеля — новые органы возникают (напр., из-за перемены образа жизни — перехода от сидячего образа жизни к подвижному или от водного к наземному) обычно в большом числе, слабо развиты, однородны и часто располагаются без определенного порядка. По мере дифференциации они приобретают определенную локализацию, количественно уменьшаясь до постоянного числа для данной таксономии. Например, сегментация тела в типе кольчатых червей носит множественный и неустановившийся характер. Все сегменты однородны. У членистоногих (произошедших от кольчатых червей) число сегментов в большинстве классов сокращается, становится постоянным, отдельные сегменты тела, объединяемые обычно в группы (голова, грудь, брюшко и т. п.), специализируются на выполнении определенных функций.
Выяснение, сохраняют они множественный характер или уже подверглись олигомеризации те или иные органы, позволяет судить о степени древности их возникновения. По комбинации органов разного возраста иногда можно судить о филогении.
Для эволюции одноклеточных характерна не олигомеризация, а полимеризация, то есть, увеличение, умножение частей клетки (органоидов).
Гомология в сравнительной геномике
Гомологичные последовательности ДНК
Сравнительный анализ последовательностей нуклеотидов в ДНК и аминокислот в белках потребовал развития традиционного понятия гомологии. При анализе последовательностей принято различать ортологию и паралогию (и, соответственно, ортологи и паралоги).
Гомологичные последовательности называют ортологичными, если к их разделению привел акт видообразования: если ген существует у некоего вида, который дивергирует с образованием двух видов, то копии этого гена у дочерних видов называются ортологами. Гомологичные последовательности называют паралогичными, если к их разделению привело удвоение гена: если в пределах одного организма в результате хромосомной мутации произошло удвоение гена, то его копии называют паралогами.
Ортологи обычно выполняют идентичные или сходные функции. Это не всегда справедливо в отношении паралогов. Ввиду отсутствия давления отбора на одну из копий гена, подвергшегося удвоению, эта копия получает возможность беспрепятственно мутировать далее, что может привести к возникновению новых функций.
Так, например, гены, кодирующие миоглобин и гемоглобин, обычно считаются древними паралогами. Сходным образом, известные гены гемоглобинов (α, β, γ и т. д.) — паралоги друг друга. В то время как каждый из этих генов служит той же самой основной функции транспорта кислорода, их функции уже несколько дивергировали: гемоглобин зародыша (фетальный гемоглобин с субъединичной структурой α2γ2) имеет большее сродство к кислороду, чем гемоглобин взрослого человека (α2β2).
Другой пример: гены инсулина у крыс и мышей. У грызунов имеется пара паралогичных генов, однако вопрос о том, произошла ли дивергенция функций, остается открытым. Паралогичными обычно называют гены, принадлежащие одному и тому же виду, однако это вовсе не необходимо. Например, паралогами можно считать гены гемоглобина человека и миоглобина шимпанзе.
Одним из методов, применяющихся в современной биоинформатике для исследования гомологичности белков с известными аминокислотными последовательностями является выравнивание белков, суть которого заключается в нахождении с помощью различных алгоритмов наиболее консервативных остатков в этих последовательностях, которые обычно являются ключевыми для выполнения одной или нескольких функций белка, исследовании доменной структуры данного белка с помощью поиска известных структурных мотивов и доменов в исследуемом белке. Также с помощью различных баз данных можно осуществить поиск гомолога данного белка в различных организмах, построить филогенетическое дерево различных белковых последовательностей и тому подобное.
Гомологичные хромосомы
Гомологичными хромосомами в диплоидной клетке называют парные хромосомы, каждая из которых досталась от одного из родителей. За исключением половых хромосом у представителей гетерогаметного пола, последовательности нуклеотидов в каждой из гомологичных хромосом имеют значительное сходство по всей длине. Это означает, что в типичном случае они содержат одни и те же гены в одинаковой последовательности. Половые хромосомы у гетерогаметного пола также имеют гомологичные участки (хотя они занимают лишь часть хромосомы). С точки зрения анализа последовательностей, половые хромосомы следует считать паралогичными.
Гомологические ряды в наследственной изменчивости
В своей работе Закон гомологических рядов в наследственной изменчивости [12] Николай Иванович Вавилов описал явления параллелизма мутаций в близкородственных группах растений. По аналогии с гомологическими рядами органических соединений, он предложил назвать это явление Гомологические ряды в наследственной изменчивости. Описание закономерностей наследственных вариаций позволяло предсказывать и целенаправленно искать ещё не выявленные гомологичные мутации у разных видов культурных растений, что привело к интенсификации селекционной работы.
Следует отметить, что, в отличие от химии, здесь речь идет об эмпирическом обобщении, а не о формальной теории, позволяющей выработать рациональную номенклатуру органических молекул, исходящую из определенного закона построения гомологического ряда.