что такое голографический эффект

Что такое голограмма и где она используется

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Однако качество первых голограмм было невысоким по причине использования для их создания примитивных газоразрядных ламп. Все изменилось в 60-е годы с изобретением лазеров, что поспособствовало стремительному развитию голографических технологий. Первые высококачественные лазерные голограммы были получены советским физиком Ю. Н. Денисюком в 1968 году, а спустя 11 лет, его американский коллега Ллойд Кросс создал еще более сложную мультиплексную голограмму.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Принцип формирования голограммы

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

В процессе визуализации голограммы в определенной точке пространства происходит сложение двух волн – опорной и объектной, образовавшихся в результате разделения лазерного луча. Опорную волну формирует непосредственно источник света, а объектная отражается от записываемого объекта. Здесь же размещается фотопластина, на которой «отпечатываются» темные полосы в зависимости от распределения электромагнитной энергии (интерференции) в данном месте.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Аналогичный процесс происходит и на обычной фотопленке. Однако для воспроизведения изображения с нее требуется распечатка на фотобумаге, тогда как с голограммой все происходит несколько иначе. В данном случае для воспроизведения «портрета» объекта достаточно «осветить» фотопластину волной, близкой к опорной, которая преобразует ее в близкую к объектной волну. В результате мы увидим почти что точное отражение самого объекта при отсутствии его в пространстве.

3D-голограмма и ее применение

Как работают голографические проекторы

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

В ряду новейших технологий передачи информации – видеоконференции и интерактивная голография, формирующая эффект висящей в воздухе прозрачной поверхности.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Возможности голографических проекторов по мере развития современных технологий постоянно расширяются, а качество изображений улучшается. Они становятся доступнее и компактнее. Сегодня на вечеринках и в ночных клубах можно встретить лазерные голографические мини-проекторы, создающие сложные лазерные «рисунки», которые сочетаются с дымовыми эффектами.

Голограмма человека

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

О том, что с тех пор голография совершила головокружительный технологический рывок, стало ясно 19 мая 2014 года в Лас-Вегасе при вручении премии Billboard Music Awards, когда перед потрясенными зрителями, как в старые добрые времена спел и станцевал… покойный Майкл Джексон. Чудесное «воскресение» стало возможным, благодаря великолепной голограмме, которую сотворила компания Pulse Evolution.

Голография на дисплее смартфона

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

С появлением мобильных телефонов, а позже смартфонов, стало ясно, что однажды пути этих двух знаковых технологий XXI века пересекутся. Так и случилось. И вот уже YouTube переполнен советами пользователей по превращению смартфона в голографический мини-проектор.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Свежую идею подхватил один из лидер ов по производству цифровых фото- и видеокамер компания RED. В июле прошлого года она представила первый в мире смартфон с 5,7 дюймовым голографическим экраном – RED Hydrogen One. Кроме привычных 2D-изображений он воспроизводит трехмерный контент без помощи специальных очков, а также контент для виртуальной и дополненной реальностей.

Голограммы из будущего

Свою лепту внесла Microsoft, разработав технологию голопортации. Она предполагает передачу объемного отсканированного изображения собеседника в режиме онлайн и создания его трехмерной модели.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Специалисты лаборатории Digital Nature Group из Японии научились с помощью фемтосекундных лазеров создавать голограммы, которые к тому же можно потрогать руками, не опасаясь нежелательных последствий. Это стало возможным за счет сокращения длительности лазерных импульсов с нано- до фемтосекунд.

Источник

«Целостная картина»: инженер-оптик — о голограммах и их прикладном применении

— В российском Университете ИТМО вы прочитали курс лекций о голографии и голограммах. Могли бы вы объяснить далёким от науки людям, что такое голограммы и как их можно использовать?

— Фотография не содержит никакой подробной информации. По сути это лишь вид через замочную скважину. У нас есть только один угол обзора, и относительное положение объектов на картине не зависит от наших движений глазами или головой. А смотреть на голограмму — всё равно что смотреть в окно. Мы можем двигаться, меняя точку обзора, и наблюдать картину с разных ракурсов. Одним словом, фотография даёт двухмерную информацию, а голограмма — более полную трёхмерную информацию.

Слово «голограмма» означает «целостная картина». Первоначально, ещё в 1940-х годах, её изобрели как способ получить доступ к большему количеству информации из рентгеновских изображений. Изобретатель голографии Денеш Габор получил Нобелевскую премию за эту идею. Сегодня голограммы используются не только для визуализации, они имеют широкий спектр применения. Поскольку их трудно подделать, они, к примеру, используются для защиты от мошенничества: на кредитных картах, банкнотах и даже лекарствах.

— Расскажите о перспективных голографических технологиях.

— Сегодня полноцветные голограммы можно записать на очень тонких и плоских пластиковых слоях — они прочны и почти ничего не весят. Одно из применений таких голограмм — использование их в качестве линз. Рефракционные линзы, изготовленные из стекла, могут быть большими и тяжёлыми. Но, используя голограммы, можно делать плоские, очень большие по площади линзы, которые при этом компактны. Два популярных способа применения таких линз — концентрирование (накопление) солнечного света для выработки электроэнергии и как элемент формирования луча в автомобильных фарах.

— Расскажите о голографической связи. В фантастических фильмах герои зачастую участвуют в переговорах в виде голографических аватаров.

— Голограмма принцессы Леи в «Звёздных войнах» и голографическая палуба в «Звёздном пути», безусловно, вызвали очень большие надежды! К сожалению, современные инженеры ограничены законами физики — какими мы знаем их сейчас. Заставить свет искривляться в свободном пространстве довольно сложно. Однако инженеры никогда не сдаются, и многие умные трудолюбивые профессионалы прямо сейчас пытаются сделать такие разработки реальными. Уже сегодня выпускают очки виртуальной и смешанной реальности, с помощью которых можно видеть человека с разных ракурсов в реальном времени, перемещаясь по специально оборудованной студии. Трёхмерные очки уже доступны, существуют даже контактные линзы с аналогичным эффектом.

— Когда же появятся первые мобильные устройства для голографических звонков?

— Боюсь, что я не предсказатель, но я поражён тем, что произошло за последние 20 лет. Трудно объяснить молодым людям, насколько необычны мобильные телефоны. В моей юности идея иметь устройство, которое помещается в кармане и на котором можно посмотреть фильм, а затем позвонить куда-то, звучала бы безумно.

Что касается создания портативных 3D-коммуникационных устройств, существует множество перспектив их развития. Обычно запись голограмм требует использования лазерного излучения. Но есть и другой способ захвата данных, который называется интегральным отображением. Используя множество камер, вы делаете несколько снимков одновременно при обычном освещении. Затем с помощью хитроумных компьютерных алгоритмов создаётся трёхмерное изображение. Большинство мобильных телефонов уже имеют по несколько камер. Учитывая конкуренцию технологических решений, я думаю, что устройства голографического звонка — не фантазия.

— Как вы считаете, голография открывает новые возможности и для образования?

— Те же видеолекции и дистанционное обучение доступны для людей не первый день. Если добавить к ним доступную дистанционную голографическую связь, то это, безусловно, откроет новые возможности распространения информации. Чем лучше способ коммуникации, тем меньше барьеров для понимания и тем больше ареал распространения и доступа к новым идеям.

Я отчетливо вижу преимущества модели онлайн-обучения в небольших профильных группах из 10—15 студентов, с которыми будут проводиться учебные занятия и лабораторная практика. Как преподаватель, я наслаждаюсь живым общением со своими студентами. Возможно, самым большим катализатором широкого использования голографической технологии будет желание достичь наибольшего погружения или подлинных ощущений, избегая при этом опасностей для здоровья, траты времени и энергии — всего, что связано с путешествиями.

— Что это такое — голографическое хранение данных?

— На моём телефоне можно хранить около 100 Гб данных, плюс у меня есть 1 Тб на внешней карте памяти. Первый жёсткий диск, который я купил, вмещал 10 Мб, стоил в десять раз дороже, чем мой телефон, а весил как большой и твёрдый металлический слиток. При этом он не фотографировал. Магнитные ленты с высокой ёмкостью хранения данных вмещают около 10 Тб и используются в картотеках, которые могут вместить до 10 тыс. лент. Все эти методы, включая использование серверов на основе полупроводников, подразумевают хранение данных в 2D-носителях, где информация считывается и выводится последовательно.

Голографическое хранение данных — это использование не плоскости, а объёма материала-носителя данных. Расчёты ёмкости хранилища данных обычно предполагают, что одна длина волны в кубе является основной единицей хранения одного бита. Тогда в 1 см³ можно легко хранить более 10 Тб. Кроме того, все данные можно записывать оптически и считывать одновременно с очень высокой скоростью передачи без износа или разрыва.

Проблемы, связанные с производством оптических приводов и носителей информации, особенно перезаписываемых кубов данных, огромны, но многие академические и коммерческие исследовательские группы в мире работают над этим типом технологии, включая группу оптики в Университете ИТМО.

— Как ещё можно использовать голографию?

— Недавно я участвовал в составлении сборника коротких статей под названием «Дорожная карта по голографии» для журнала Journal of Optics британского Института физики. В этом сборнике описан вклад в голографию ведущих учёных мира, в него включены и значимые российские исследования.

Например, в российском Университете ИТМО, где я прочитал курс лекций, в лаборатории цифровой и изобразительной голографии активно ведутся работы по разработке методов сверхбыстрой цифровой голографии в видимом и терагерцовом частотных диапазонах. Такие методы используются при разработке новых революционно быстрых каналов беспроводной связи, намного превосходящих привычный нам Wi-Fi, для изучения образования плазменных каналов, вызванных высокоинтенсивным лазерным излучением, и для измерения оптических нелинейных свойств объектов и материалов.

Учёные используют голограммы для рассеивания нейтронов, объяснения принципов работы человеческого мозга и даже для более эффективного производства возобновляемой солнечной энергии. Пытаются оптимизировать энергопотребление в центрах обработки данных, внедряют цифровую голографическую микроскопию для выявления заболеваний, в том числе с использованием мобильных телефонов. Могу с некоторой уверенностью предсказать: впереди нас ждёт ещё очень многое.

Источник

Любительская голография — начало пути

Хочу рассказать об одном из своих интересов – оптической голографии. Нет, это про не те голограммы, что показаны в «Звёздных войнах», или видны в пирамидках на экранах мобильных телефонов, не про проекцию на плёнке и т. п. А то, о чём рассказывает Википедия в соответствующей статье, а ещё лучше в англоязычном варианте (это касается всех ссылок на Википедию по тексту). Не буду вдаваться в технические подробности и дебри уравнений (происходящие процессы очень сложны, и по теме написаны десятки объёмных монографий и сотни статей), а попробую очень кратко рассказать, что такое оптическая голография и чем она отличается от фотографии в практическом плане, что в ней такого интересного и каким образом можно в домашних условиях изготовить первую настоящую голограмму. Хоть процесс записи голограмм и похож на классический аналоговый фотографический процесс, но всё же он имеет ряд заметных отличий: другие оптические схемы, не нужен объектив, и соответственно нет необходимости в фокусировке, используются фотографические материалы со значительно большим разрешением, монохроматические источники излучения, принципиальное отсутствие негатива и позитива, строгие требования к отсутствию вибраций, иные правила композиции сцены и мн. др.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Итак, классическая цветная (в чёрно-белой всё также, только с одним каналом цвета) фотография, как аналоговая, так и цифровая, способна фиксировать только амплитуду световых волн, и посредством цветоделения опосредованно длину волны. Получается плоское изображение сцены строго с одного ракурса и с цветами, только с тем или иным успехом создающими для человека иллюзию исходных цветов. Использование свойств бинокулярного зрения и особых художественных приёмов может придать изображению некоторый объём, но также лишь с одного ракурса, цифровые VR системы не в счёт, речь про чистый аналог.

Малоизвестный процесс Липпмана, эксплуатируя явление интерференции света, непосредственно регистрирует, а затем воспроизводит исходный спектральный состав излучения. Вследствие интерференции на фотопластинке запечатлевается сложная картина взаимодействия всех пришедших от сцены световых волн, а в последствии дифракция на получившейся структуре снова восстанавливает эти волны в точности с той же длиной и пропорциональной амплитудой. Получается изображение аналогичное фотографическому, но с точной передачей спектра излучения без привлечения цветоделения и иных ухищрений. Почему же данный способ не вытеснил традиционную цветную фотографию, особенно учитывая, что он появился задолго до неё? Во-первых, высокая сложность: необходимы специальные высокоразрешающие фотоматериалы, особое плотно прилегающее к фотографической эмульсии зеркало (изначально использовалась жидкая ртуть), специальная химическая обработка, полученное изображение воспроизводится только под определёнными углами освещения и наблюдения, и пр. Во-вторых, и так хорошо, получаемые аддитивным смешением цвета́ для человека визуально тождественны исходным длинам волн.

Оптическая голография, также, как и процесс Липпмана эксплуатирует явление интерференции и фиксирует не только интенсивность, но и фазу световой волны, а значит направление падения каждого луча в сцене попавшего на фотографический материал. Происходит запись информации о световом поле, а не об изображении построенном объективом, как в классической фотографии. Потому технология и была названа голографией, что с др.-греческого переводится как «полный» и «пишу», т. е. полная запись, при этом сохраняется вся информация о падающем на регистрирующую среду свете. И при воспроизведении голографическое изображение получается практически неотличимо от оригинального в момент записи, несущее в себе множество признаков глубины, позволяющее рассмотреть запечатлённый объект в разных ракурсах в пределах некоторого угла (имеющее параллакс по одной или двум осям). Если есть тени, блики, отражения, преломления, то они достоверно передадутся, такая себе трассировка лучей.
К слову, существуют пленоптические камеры, реализующие некоторые возможности предоставляемые голографией, но они не получили пока особого распространения.

Для примера, очень удачная цветная голограмма (не моя):

Динамический диапазон сцены может достигать фантастических 1:1 000 000. Голограмма играет роль окна, через которое можно наблюдать сцену в том виде, в котором она была на момент записи. Каждая точка голограммы несёт в себе информацию о всех упавших лучах от всей сцены. Потому разделив голограмму на несколько частей мы потеряем часть информации о сцене, но не в таком объёме, как в случае классической фотографии, в случае голограммы изменив ракурс возможно удастся увидеть объекты сцены, которые были бы полностью потеряны в случае обыкновенной фотографии. Конечно, применение голографии не ограничивается только художественной голографией и развлечениями, это и контроль конструкционных материалов и технологических процессов, и научные исследования, и голографические оптические элементы, и перспективные способы хранения информации, и методы обработки информации и мн. др.

Как же происходит запись голограммы? Как правило для этого требуется два когерентных пучка света, один опорный, идёт непосредственно от лазера и непосредственно падает на регистрирующую среду. Второй отражается от объектов сцены и несёт информацию о ней. Именно они и интерферируют между собой, а полученная картина интерференционных полос фиксируется фотографическим материалом. Затем благодаря дифракции на полученной структуре только одного опорного пучка, не несущего обычно никакой информации, происходит восстановление объектного (второго пучка) и возникает изображение запечатлённой сцены. Происходит кодирование информации о сцене с участием опорного пучка выступающего в роли ключа, затем восстановление закодированной информации с использованием того-же ключа, пучка с такими же свойствами, как и у опорного в момент записи.

Существует множество видов голограмм и способов их записи, две наиболее простых и наглядных схемы это – схема Лейта-Упатниекса, дающая пропускающие голограммы, в ней и опорный пучок и объектный падают на фотоматериал с одной стороны. И схема Денисюка, дающая отражающие голограммы, когда пучки падают с разных сторон. Первые имеют очень высокую яркость и степень реализма, имеют несколько меньшие требования к разрешающей способности фотоматериалов и виброустойчивости, однако с ними сложно получить цветное изображение, а самое главное, что они могут быть воспроизведены только с помощью лазера (так называемые радужные голограммы воспроизводятся белым светом, но их пока рассматривать не будем). Вторые могут быть воспроизведены в обычном белом свете, голограмма самостоятельно вырезает из падающего света нужные ей длины волн, и при записи голограммы одновременно тремя лазерами можно получить цветное изображение. Оба способа имеют применение и легко реализуются, особенно второй, для которого достаточно положить фотопластинку на объект и осветить со стороны пластинки лазером. Не буду сюда вставлять чужие картинки со схемами, кои есть в той же Википедии, сосредоточусь на практической части. Отметив только, что недостатком кроме сложности процесса является необходимость использования высоко когерентного, а значит монохроматического излучения, и для записи цветного изображения также будет необходимо использовать три источника излучения. А также, как и в случае процесса Липпмана у голограмм при воспроизведении особые требования к освещению.

Также существует возможность рассчитать дифракционную картину на ЭВМ и затем записать её на фотоматериал, или отобразить рассчитанную интерференционную картину на голографическом дисплее, которые в данный момент находят на стадии ранних прототипов, например проект MIT. Но на практике к таким способам не прибегают, они пока находятся в стадии научных исследований, кроме фурье-голограмм, которые вполне реально напечатать на обыкновенном принтере, но они особого восторга не вызывают. Голограммы крупных размеров, со сложными эффектами, объектов не существующих в реальности обычно создаются гибридным способом, когда объектный лазерный пучок проходит через LCD панель, которая формирует изображение с одного из ракурсов, и затем интерферирует с опорным пучком на голографическом фотоматериале. Делая несколько экспозиций с разными изображениями получают так называемую мультиплексную голограмму. Немного информации о цифровых синтезированных голограммах есть в статье Википедии.

Что же необходимо для записи классического, полностью аналогового голографического изображения – создания оптической голограммы?

2176 лин./мм. Или, для отражательной голограммы при угле падения опорного пучка 45°, и падении объектного пучка перпендикулярно пластинке. Принимая коэффициент преломления стекла равным 1.6, получим угол опорного пучка после преломления равный arcsin(sin(45°) / 1.6)

4798 лин./мм.
Для этого используются различные приёмы, от того, что кладут объекты сцены непосредственно на фотоматериал, или фотоматериал на объекты, до оптических столов весом сотни килограмм с активными пневматическими опорами. Требования по вибрациям значительно смягчаются при использовании импульсного лазера, но при этом сам лазер становится самой сложной и дорогостоящей частью системы.

Второе. Специальные фотоматериалы, имеющие высокое разрешение (от 1 000 до 5 000 лин./мм и выше) и созданные специально для фиксирования интерференционной картины с использованием тех или иных схем. Существующие виды регистрирующих материалов:

Третье. Лазер также, как и механика, должен быть очень стабильным, причём требования к стабильности крайне высоки. В первую очередь он должен быть одномодовым, как по поперечным модам (один единственный пучок излучения), англ. single transverse, TEM00, так и по продольным (одна частота излучения), англ. single longitudinal. Вот по последней характеристике и нужно искать подходящий лазер. Для голографии кроме длины волны крайне важен такой параметр излучения, как временна́я когерентность. В общих чертах он определяет стабильность параметров излучения во времени, максимально возможное время отставания одного луча по отношению к другому, при котором будет наблюдаться конрастная интерференционная картина. Так как скорость света очень высока, то удобнее манипулировать длиной когерентности (сколько свет проходит за время когерентности). Ширина линии лазерного излучения связана с длиной когерентности по формуле: центральная_длина_волны^2 / ширина_линии. Так для длины когерентности в 10 см ширина линии лазера для 650 нм должна составлять 0.004 нм.

Длина когерентности лазера ограничивает максимальную глубину сцены голограммы, но для разных схем по разному. Например, для схемы записи Денисюка, где объект находится за фотопластинкой, разница хода объектного и опорного пучка приблизительно составит расстояние которое прошел луч от фотопластинки до объекта и обратно. И максимальная глубина сцены составит примерно половину длины когерентности. В случае схемы Лейта-Упатниекса всё зависит от способа освещения, наличия и положения зеркал и светоделительной пластинки, и вполне можно добиться максимальной глубины сцены приблизительно равной длине когерентности.

К счастью, довольно много видов лазеров при правильном подходе способны дать требуемые характеристики, особенно в области малых мощностей. Так многие гелий-неоновые лазеры имеют излучение с длиной когерентности 15-20 см при мощности до десятков мВт. Как это ни странно, большинство недорогих красных лазерных указок и маломощных модулей до 5 мВт также вполне пригодны, и могут давать излучение с длиной когерентности от сантиметра до нескольких метров. А вот зелёные и синие лазерные указки часто не пригодны для чего-то большего чем для запись сцены с монетами в несколько миллиметров глубиной, но тут нужно изучать каждый экземпляр в отдельности, про это будет немного ниже. В общем, обзор лазеров, их выбор, способы питания и стабилизации – это тема для ещё одной, довольно объёмной статьи.

Перейдём непосредственно к практической части. Для первых экспериментов был выбран готовый набор для экспериментов в области голографии, включающий в себя подходящий лазер с блоком питания на батарейках, фотополимерные голографические пластинки, некоторую механику, документацию, тестовый объект в виде модели автомобиля, и другие вспомогательные объекты вроде брелока с синим светодиодом в качестве источника неактиничного (не влияющего на фотоматериалы) свет – Litiholo Hologram kit c дополнением Reflection upgrade.

Фотоматериалы. Фотополимер с защитным слоем на оптическом стекле толщиной 1.8 мм, заявленная дифракционная эффективность (что-то вроде КПД в данном случае) более 90%, чувствительность в диапазоне от 400 до 690 нм, т. е. можно записывать и цветные голограммы. Подходят, как для записи пропускающих, так и отражательных голограмм. Фотопластинки до экспонирования фиолетового цвета, после облучения лазером в наиболее освещённых местах обесцвечиваются, полное обесцвечивание производится ярким белым светом, никакой другой процедуры проявления или фиксирования не требуется.

Лазер. Полупроводниковый лазерный модуль 638 нм с заявленной мощностью 5 мВт, имеет переменный резистор для точной настройки тока и блок питания на батарейках, заявлен как пригодный для голографии.

В соответствии с комплектной инструкцией была собрана схема для записи пропускающих голограмм.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Лазер был предварительно прогрет (оставлен во включенном состоянии) в течении 15 минут, а генерируемый спектр проверен самым простым способом: за лазером устанавливается лист белой бумаги, а перед ним параллельно бумажному листу на расстоянии 30 см и перпендикулярно лучу стеклянная пластинка (например, предметное стекло для микроскопа или фотопластинка с удалённым чувствительным слоем), на листе должна наблюдаться чёткая интерференционная картина состоящая из светлых и тёмных полос, в тёмных промежутках должны отсутствовать более слабые светлые полосы, а сама картина должна быть стабильной во времени и как можно более контрастной. Если полосы не наблюдаются, смещаются во времени, или картина имеет очень низкую контрастность, то не имеет особого смысла пытаться записать голограмму, необходимо изменить ток лазера, дать ещё времени на прогрев и/или заменить сам лазер. Если картина чёткая и без промежуточных полос, то можно говорить о том, что длина когерентности не меньше чем толщина_пластинки * 2 * коэффициент_преломления. Так при толщине стекла 1.8 мм это число составит примерно 5.5 мм, потому лучше найти стекло потолще или лучше набор стёкол разной толщины. Скорее всего длина когерентности будет даже больше, так как без инструментальных способов измерения оценка контрастности слишком субъективна. Точнее можно будет сказать записав голограмму или воспользовавшись интерферометром Майкельсона.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Затем была произведена запись голограммы комплектного объекта, модели автомобиля.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

К сожалению, камера не передаёт динамического диапазона получаемых изображений их яркости и объёма. Вживую, когда убираешь объект создаётся ощущение, что ничего не изменилось, что объект всё там же, только немного изменяется его освещённость, остаётся объём, отражения, тени, блики и возможность изменения угла наблюдения. Изображение проявляется только в свете лазерного излучения падающего под углом падения опорного пучка.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Следующей была собрана схема для записи отражательных голограмм с помощью дополнительных деталей из Reflection upgrade, которые лишены выше озвученного недостатка и видны в белом свете.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Тут уже необходимо сооружать башню для лазера, и ни о какой ¼ части длины волны речь не идёт. Однако это требование распространяется только на взаимное расположение объекта и фотоматериала, и некоторых оптических элементов, лазер просто не должен откровенно болтаться, и всё будет хорошо.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Полученные голограммы видны в белом свете, лучше всего подходят точечные источники с непрерывным спектром, солнечный свет или свет от галогенных ламп, а угол падения светового пучка должен быть тем же, что и при записи. Коэффициент цветопередачи источника освещения крайне важен, так как отражательная голограмма создаёт изображение отражая некоторый диапазон длин волн, а остальные пропускает, и этот самый диапазон для максимальной яркости изображения должен содержаться в свете в полном объёме. Так как запись ведётся красным лазером, то этот диапазон получается красно-желтым, цвет зависит от угла падения света, и изображение получается несколько приятнее на вид, чем монохромное в свете лазерного излучения.

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

что такое голографический эффект. Смотреть фото что такое голографический эффект. Смотреть картинку что такое голографический эффект. Картинка про что такое голографический эффект. Фото что такое голографический эффект

Голограммы получились, и это показывает, как легко можно начать (а для кого-то и закончить, если не зацепило) развиваться в этом довольно популярном на западе, и практически забытом на пост советском пространстве увлечении, которое вполне может перейти в профессиональное и коммерческое русло, например изготовление изобразительных голограмм на заказ. Также это отличная тема для привлечения интереса школьников к наукам, кружковой деятельности, первых научных работ, затрагивающая и способная интегрировать множество разделов физики, техники, технологии, химии, радиоэлектроники, информационных технологий.

Если тема вызовет интерес, то постараюсь ещё написать про механику, оптику, лазеры, фотоматериалы, в том числе самодельные и т. д. Также с удовольствием учту все замечания и пожелания, дополню статью недостающей по мнению читателей информацией.

Для более глубокого изучения вопроса также могу порекомендовать следующие источники:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *