что такое голографический дисплей
Как это работает? | Голографический дисплей
Первая голограмма была получена венгерским физиком Денешом Габором в 1947 году в ходе экспериментов по повышению разрешающей способности электронных микроскопов. Он придумал само слово «голограмма», желая подчеркнуть полную запись оптических свойств объекта. Денеш немного опередил свое время: его голограммы отличались низким качеством из-за использования газоразрядных ламп. После изобретения в 1960 году рубиново-красного и гелий-неонового лазеров голография начала активно развиваться. В 1968 году советский учёный Юрий Николаевич Денисюк разработал схему записи голограмм на прозрачных фотопластинках и получил высококачественные голограммы. А 11 годами позже Ллойд Кросс создал мультиплексную голограмму, состоящую из нескольких десятков ракурсов, каждый из которых можно увидеть только под одним углом. Как же работает современный голографический дисплей — об этом в сегодняшнем выпуске!
Основным фотоматериалом для записи голограмм являются специальные фотопластинки на основе традиционного бромида серебра, позволяющие достичь разрешающей способности более 5000 линий на миллиметр. Также применяются фотопластинки на основе бихромированной желатины, обладающие большей разрешающей способностью. При их использовании до 90% падающего света преобразуется в изображение, что позволяет записывать очень яркие голограммы. Активно разрабатываются и среды на основе голографических фотополимерных материалов. Эту многокомпонентную смесь органических веществ наносят в виде тонкой плёнки на стеклянную или плёночную подложку.
Уже существуют на рынке дисплеи марки HoloVisio от венгерской компании Holografika. Суть их технологии заключается в проецировании картинки двумя десятками узконаправленных проекторов, благодаря чему изображение раскладывается в пространстве вглубь дисплея. Сложность этой технологии сказывается на цене: стоимость 72-дюймового экрана с разрешением 1280 на 768 пикселей составляет порядка 500 тысяч долларов.
Вполне возможно, что уже в недалеком будущем голографические экраны станут более доступными и получат массовое применение.
Дисплеи будущего 2: обзор лучших голографических и гибких экранов
Если взять для конкретного примера тему нашего материала – дисплеи – то на звание революционных по-настоящему претендуют лишь появление цветного изображения вместо монохромного и переход от электронно-лучевых трубок к матрицам из жидкокристаллических элементов. Все остальное, как то: рост разрешения, улучшение цветопередачи, снижение габаритов дисплея при росте его площади – это просто важные вехи.
При современных темпах прогресса, до создания eye-Phone осталось много меньше тысячи лет.
Что же сегодня можно считать наиболее перспективным с точки зрения кардинальных перемен? На наш взгляд, прорывов можно ждать от трех экспериментальных направлений: это стереоскопические дисплеи, дисплеи на гибких матрицах и полупрозрачные дисплеи. О каждой из групп этих разработок мы вам и расскажем…
Самое объёмное 3D
Самый очевидный на сегодня путь в очередную техническую революцию для дисплеев – это стереоскопия, получившая маркетинговое название «3D». Некоторое время назад на рынке активно продвигалась технология создания стереоскопического изображения, основанная на поляризации света. Мы многократно писали о телевизорах и мониторах, оснащённых ею, подробно рассказывая о фундаменте этой технологии в виде бинокулярного зрения человека, об устройстве затворных очков, строении экрана и алгоритмах формирования 3D.
В настоящее время «поляризационная» стереоскопия заняла на рынке свою нишу, объёмы которой, а также общее влияние технологии на дальнейшее развитие производство дисплеев не позволяют нам говорить о революционном сломе.
Так сейчас выглядит коммерческое массовое стереовидение
Более перспективно выглядят сегодня технологии безочкового создания стереоскопического изображения. Их кратко можно разделить на те, которые используют расположенные на экране дисплея преломляющие микролинзы, и на те, которые используют систему слежения за положением зрителя с помощью регистрирующих сенсоров (видеокамер). Их большая техническая сложность и определённая степень экспериментальности на сегодняшний момент не позволяют нам строить долговременные прогнозы относительно их судьбы. Однако попробуем и тут усомниться в их истинной революционности, способной изменить конструкцию дисплеев будущего до неузнаваемости.
Дело в том, что и очковые и безочковые технологии стереовидения предполагают создание иллюзии объёма на плоском экране. Мы же предполагаем, что сделать 3D-революцию среди дисплеев сможет модель, так или иначе демонстрирующая истинное трёхмерное изображение. Технологии, способные решить вопрос стереоизображения таким образом есть уже сейчас. Наиболее перспективные из них – голографические и объёмные дисплеи.
Начнём обзор с того лучшего, что уже есть на рынке. По нашему мнению, это – дисплеи марки HoloVisio производимые венгерской компанией Holografika. Компания с 1996 года занимается изучением и развитием технологий трёхмерного изображения. В 2008 году появились первые дисплеи HoloVisio. В данный момент первые дисплеи HoloVisio уже сняты с производства, а их место заняли модели второго и третьего поколения. Суть технологии Holografika в проецировании картинки двумя десятками узконаправленных проекторов, благодаря чему изображение раскладывается в пространстве дисплея как бы вглубь. Столь сложный способ визуализации дорого обходится в прямом и переносном смысле: на 72-дюймовом экране, фронтальная плоскость которого имеет разрешение 1280 на 768 пикселей фактически имеется 73 миллиона воксельных элемента. Стоимость же самого дисплея достигает 500 тысяч долларов. Говорить о немедленном массовом применении этого чуда в домохозяйствах Европы и Америка, конечно, не приходится.
Однако не только цена, но сложность самой конструкции останавливает массовое внедрение дисплеев, подобных HoloVisio. Эта сложность имеет существенное побочное свойство в виде сложности программного обеспечения в частности и воспроизводства голографического контента вообще. Именно поэтому учёные продолжают искать более простые, более дешёвые и более разумно устроенные способы воссоздания объёмного изображения.
Презентация компании Holografika
Объединение из трёх групп японских учёных и инженеров уже семь лет работает над созданием лазерного проекционного оборудования для создания объёмных изображений. Мы говорим о технологии Aerial 3D, созданной компанией Burton Inc, японским Национальным Институтом производства, науки и технологии (National Institute of Advanced Industrial Science and Technology) и университетом Кейо (Keio University). Практическая демонстрация проектора Aerial 3D состоялась в ноябре 2011 года в рамках выставки CES 2011. Японские разработчики отказались от традиционного плоского экрана, рисуя объекты прямо в трёхмерной среде обычного пространства с помощью лазерных лучей.
Японский вариант голографического безэкранного дисплея
Технология Aerial 3D использует эффект возбуждения атомов кислорода и азота фокусированными лазерными лучами. В данный момент установка способна проецировать объекты, состоящие из 50000 элементов (точек) с частотой 10-15 «кадров» в секунду. В будущем разработчики планируют довести скорость до 20-25 «кадров» в секунду и перевести изображение из монохромного (зелёного) режима в цветной.
Интерактивный голографический комплекс из Южной Калифорнии
Над технологией, предлагающей похожего качества картинку, работает и лаборатория ICT Graphics Lab при Южнокалифорнийском университете. Ещё в 2009 году её сотрудники представили интерактивный панорамный (изображение можно рассматривать с любой точки окружности) световой дисплей (Interactive 360º Light Field Display). Дисплей основан на технологии проецирования изображения на вращающееся анизотропное зеркало.
Из наиболее свежих проектов голографических дисплеев нужно вспомнить и разработку Microsoft Research Cambridge с названием Verneer. Vermeer – это комплекс из голографического безэкранного дисплея и видеокамеры, придающей системе сенсорные функции. Дисплей использует технологию проекции между двух параболических зеркал (мираскоп). Лазерный луч рисует изображение с частотой 2880 раз в секунду, последовательно проходя по 192 точкам. В результате зритель видит картинку, обновляемую 15 раз в секунду, висящую в пространстве и полностью доступную для контакта. Как раз контакт с иллюзорным голографическим изображением и прорабатывает видеокамера – являющаяся аналогом хорошо известного жестового манипулятора Microsoft Kinect.
Гибкий вариант
Мысль о возможности создания гибких дисплеев – первая, строго не относящаяся к вопросом приспособления виртуального пространства экрана к физиологии зрения человека. Проще говоря, пользователю не важно – видит он изображение на гибком или на негнущемся дисплее.
Но гибкость дисплеев – вещь вполне революционная с точки зрения удобства использования устройств и их компактности, поскольку наделяет экран свойствами, присущими давно знакомому человечеству материалу. Бумаге.
Бумажный лист легко складывается в несколько раз, скручивается в трубку, обладает устойчивостью к падению. Именно этими свойствами стараются наделить разработчики свои гибкие дисплеи – или шире – гибкие компьютеры. Стоит отметить, что конкуренцию гибким дисплеям в какой-то мере составляют встраиваемые в электронные устройства пико-проекторы. Проецируемое ими изображение уже обладает достаточной яркостью и разрешением, а также наделено функциями сенсорного дисплея.
В настоящее время практически все крупные производители электроники включились в технологическую гонку по созданию гибких дисплеев. Среди имён авангарда тут можно назвать Samsung, LG, Hewlett-Packard…
Гибкая «ткань» для пошива дисплеев производства HP
Последняя может похвастаться созданием пластикового материала для производства дисплеев, толщиной всего 100 микрометров. Дисплеи из этого материала отличаются минимальным потреблением энергии и хорошо совместимы с технологиями миниатюризации оперативной памяти и накопителей. Hewlett-Packard надеется наладить выпуск гибких компьютеров уже в 2014 году.
Дисплей LG: тонкий и вполне гибкий
В свою очередь, компания LG в марте 2012 года представила готовый к производству образец гибкого дисплея. Показанное устройство имеет диагональ 6 дюймов и разрешение 1024 на 768 точек. Максимальный угол сгибания может достигать 40 градусов. Дисплей весит 14 грамм, имеет толщину 0,7 миллиметра и без последствий выдерживает падение с высоты 1,5 метра. Поступление дисплея на рынок LG планирует на середину 2012 года.
Скриншоты c изображением дисплея Sony, показанные на дисплее ноутбука Sony
Рассуждая на тему размеров гибких дисплеев, можно вспомнить недавний анонс компании Sony 9,9- дюймового гибкого дисплея на основе матрицы OLED. Толщина дисплея равна 110 микрометрам, а разрешение – 960 на 540 точек (плотность элементов 111 PPI). Дисплей был представлен на бостонской Display’s Display Week 2012 в виде… серии скриншотов на ноутбуке.
Nanolumens не экономит на размере
Гораздо более реальна продукция компании Nanolumens. Компания производит гибкие дисплеи для дома, офиса и внешнего пространства (презентационные) с 2010 года под марками NanoFlex и NanoWrap. Дисплеи не отличаются особой тонкостью (толщина матричной подложки может достигать 4 сантиметров, но, как утверждают производители, они практически не накладывают ограничений на площадь и диагональ экрана. В доказательство своих слов ими уже был продемонстрирован презентационный гибкий дисплей площадью в 5 квадратных метров.
Samsung не спешит показать все козыри в этой игре
Наконец, компания Samsung неоднократно заявляла, что ведёт активную разработку гибких сенсорных дисплеев на матрицах OCTA (On Cell TSP AMOLED). В этих дисплеях компания видит потенциал значительного снижения энергопотребления экрана будущих смартфонов и планшетов, а также возможность снижения толщины их корпуса не менее, чем на 35 процентов. К сожалению, в производство модели с гибким дисплеем Samsung собирается пустить не ранее 2013 года.
Перспективы прозрачны
Сами по себе прозрачные дисплеи – факт технически состоявшийся. Производить их достаточно легко. Правда, среди сфер использования в основном вспоминается дизайн: живыми примерами могут служить имиджевый смартфон Sony Ericsson Xperia Pureness или более свежий и бюджетный Explay Crystal.
Однако прозрачность дисплея может использоваться много шире. И наиболее интересное применение тут – это создание устройств, совмещающих информацию на дисплее с видимым человеком участком пространства. В данный момент такого рода устройства с прозрачными дисплеями активно разрабатываются многими компаниями, подразделяясь на три основных типа: системы-экраны, системы-очки и системы-контактные линзы.
Samsung именно так видит планшеты будущего
В данный момент в открытую о разработке систем-экранов говорят компании Samsung и Microsoft. Первая видит итогом создание мобильного компьютера, представляющего собой гибкий прозрачный экран, способный заменять как традиционный планшет, так и расширять функции доступа к данным информационной сети на реальную жизнь.
Что касается компании Microsoft, то её подразделение Microsoft Applied Sciences работает над созданием интерфейса для прозрачного экрана, благодаря которому человек вручную сможет манипулировать виртуальными сущностями операционной системы и запущенных в ней программ.
Наиболее известный проект прозрачных экранов, выполненных в виде очков виртуальной реальности – это, конечно, Project Glass, разрабатываемый компанией Google. В конце июня 2012 года Google в рамках выставки Google I/O провела большую презентацию текущего состояния проекта. В её ходе было рассказано функциях устройства (звонки, видеосъёмка от первого лица, работа с интернет-службами), были упомянуты кое-какие технические характеристики и описаны особенности дизайна (масса, наличие нескольких цветовых версий, наличие версий с затемнёнными стёклами и стёклами с диоптриями).
Наконец, наиболее интересная и по-настоящему революционная тема дисплеев-линз и компьютеров линз только набирает ход. Ею вплотную с 2009 года занимаются исследователи из финского университета Аалто и американского Университета штата Вашингтон. В настоящее время проект находится на стадии появления первого прототипа, представляющего собой контактную линзу с антенной для беспроводной подачи энергии и CMOS-схемой, обслуживающей один пиксель в центре линзы.
Представлены голографические 3D-мониторы с разрешением до 8K
Американская компания Looking Glass Factory, ранее выпустившая первый персональный голографический дисплей Looking Glass Portrait, пошла дальше, и представила голографические 3D-мониторы Looking Glass 4K Gen2 и Looking Glass 8K Gen2. Модель с разрешением 4K имеет диагональ экрана 15,6″, а 8K-версия получила 32-дюймовый дисплей.
Второе поколение голографических дисплеев компании существенно улучшило визуализацию за счет увеличения разрешения и диагонали. Для получения 3D-картинки оборудование проецирует до 100 отдельных изображений под немного разными углами, что создает эффект глубины и объемной картинки.
Вместе с улучшенной визуализацией новое поколение оборудования также упрощает создание голограмм. Для работы Looking Glass 4K Gen2 потребуется видеокарта не ниже Nvidia GTX 1060, а для Looking Glass 8K Gen2 — топовая RTX 3090.
Новинки позиционируются как решения для разработчиков, исследователей, дизайнеров, архитекторов, но заказать голографические 3D-дисплеи может любой желающий.
Голографические дисплеи: тогда и сейчас
Запустить софт для моделирования и вывести полноразмерную модель для редактирования в пространстве. Включить коммуникатор и побеседовать не с плоским изображением собеседника на видеозвонке, а с его объемной проекцией, через которую просвечивает любимый ковер. Отодвинуть штору и увидеть на оконном стекле прогноз погоды, ситуацию с пробками, и вообще — как оно там. Завести двигатель автомобиля и получать на участке лобового стекла дополнительные оповещения о дорожной разметке, возможных опасностях и иных важных сведениях.
Если раньше все это было уделом научных фантастов, то сейчас подобное перешло из разряда “Фантастика” в разряд “Ближайшее будущее”. О том, как современные ученые приближают век голографии, с чего все начиналось и какие трудности развития голографические технологии испытывают на данный момент, мы постараемся рассказать в этом посте.
Как создаются голографические изображения
Человеческий глаз видит физические объекты, так как от них отражается свет. Построение голографического изображения основано именно на этом принципе – создается пучок отраженного света, полностью идентичный тому, который отражался бы от физического объекта. Человек, смотря на этот пучок, видит тот же самый объект (даже если смотрит на него под разными углами).
Голограммы же более высокого разрешения — это статические рисунки, “холст” которых — фотополимер, а “кисть” — лазерный луч, который разово меняет структуру фотополимерных материалов. В итоге обработанный таким образом фотополимер создает голографическое изображение (на плоскость голограммы падает свет, фотополимер создает его тонкую интерференционную картину).
К слову, про саму интерференцию. Она возникает в случае, если в определенном пространстве складывается ряд электромагнитных волн, у которых совпадают частоты, причем с довольно высокой степенью. Уже в процессе записи голограммы в конкретной области складывают две волны – первая, опорная, исходит непосредственно от источника, вторая, объектная – отражается от объекта. Фотопластину с чувствительным материалом размещают в этой же области, и на ней возникает картина полос потемнения, соответствующих распределению электромагнитной энергии (интерференционная картина). Затем пластину освещают волной, близкой по характеристикам к опорной, и пластина преобразует эту волну в близкую к объектной.
В итоге получается, что наблюдатель видит примерно такой же свет, который отражался бы от изначального объекта записи.
Краткая историческая справка
Шел 1947-й год. Индия получила независимость от Британии, Аргентина предоставила избирательные права женщинам, Михаил Тимофеевич Калашников создал свой знаменитый автомат, Джон Бардин и Уолтер Браттейномиз проводят эксперимент, позволивший создать первый в мире действующий биполярный транзистор, начинается производство фотоаппаратов Polaroid.
А Деннис Габор получает первую в мире голограмму.
Вообще, Деннис пытался повысить разрешающую способность электронных микроскопов той эпохи, но в ходе направленного на это эксперимента получил голограмму.
Увы, Габор, как и многие умы, немного опередил свое время, и у него просто не было нужных технологий, чтобы получать голограммы хорошего качества (без когерентного источника света этого сделать невозможно, а первый лазер на кристалле искусственного рубина Теодор Мейман продемонстрирует лишь 13 лет спустя).
А вот после 1960-го (красный рубиновый лазер с длиной волны 694 нм, импульсный, и гелий-неоновый, 633 нм, непрерывный) дело пошло куда бодрее.
1962. Эммет Лейт и Юрис Упатниекс, Мичиганский Технологический Институт. Создание классической схемы записи голограмм. Записывались пропускающие голограммы – в процессе восстановления голограммы свет пропускали через фотопластину, но некоторая часть света отражается от пластины и тоже создает изображение, которое видно с противоположной стороны.
1967. Первый голографический портрет записывают при помощи рубинового лазера.
1968. Совершенствуются и сами фотоматериалы, благодаря чему Юрий Николаевич Денисюк разрабатывает собственную схему записи и получает высококачественные голограммы (восстанавливали изображение путем отражения белого света). Все проходит вполне неплохо, настолько, что схема записи получает название “Схема Денисюка”, а голограммы — “Голограммы Денисюка”.
1977. Мультиплексная голограмма Ллойда Кросса, состоящая из нескольких десятков ракурсов, каждый из которых можно увидеть только под одним углом.
Плюсы — размеры объекта, которые требуется записать, не ограничиваются длиной волны лазера или размером фотопластины. Можно создать голограмму предмета, которого не существует (то есть просто нарисовав придуманный предмет в сразу нескольких ракурсах).
Минусы — отсутствие вертикального параллакса, рассмотреть такую голограмму можно только по горизонтальной оси, но не сверху или снизу.
1986. Абрахам Секе осознает, что нет предела совершенству, и предлагает создать источник когерентного излучения в приповерхностной области с помощью рентгеновского излучения. Пространственное разрешение в голографии всегда зависит от размеров источника излучения и его удаленности от предмета – это дало возможность восстановить в реальном пространстве атомы, которые окружали эмиттер.
Сейчас
Сегодня некоторые прототипы голографических видеодисплеев работают примерно так же, как и современные ЖК-мониторы: особым образом рассеивают свет, формируя псевдо-3D, а не создают интерференционную картину. С чем связан и главный минус такого подхода — нормально оценить такую картинку сможет только один человек, сидящих под правильным углом к монитору. Все остальные зрители будут не так впечатлены.
Конечно же, любители научной фантастики и новых технологий спят и видят, как голографические дисплеи станут такой же привычной вещью, как wifi дома или фотокамера в смартфоне, сравнимая с не самой плохой мыльницей. И хотя идеальная голограмма в понимании большинства — это на самом деле не сегодня и не завтра, разработки на эту тему уже активно ведутся.
Институт науки и передовых исследований, Корея. Рабочий прототип нового 3D-голографического дисплея, ТТХ которого примерно в пару тысяч раз лучше, чем у существующих аналогов.
Слабое звено таких дисплеев — матрица. Пока матрицы состоят из двухмерных пикселей. Корейцы же использовали обычный (но хороший) дисплей вкупе со специальным модулятором для фронта оптического импульса. Результатом стала высококачественная голограмма, правда, небольшая — 1 кубический сантиметр.
Было время, когда считалось, что рассеивание света — это серьезное препятствие для нормального распознавания проецируемых объектов. Но как показывает наша практика, современные 3D-дисплеи можно существенно улучшить, научившись контролировать это рассеивание. Правильное рассеивание позволило увеличить и угол обзора, и общую разрешающую способность,
Университет Гриффита, Технологический университет Суинберна, Австралия. Голографический дисплей на основе графена.
Ученые вооружились методом Габора, упоминавшимся в самом начале этого поста, и сделали 3D-голографический дисплей высокого разрешения на основе цифрового голографического экрана, состоящего из мелких точек, отражающих свет.
Плюсы – угол обзор в 52 градуса. Для нормального восприятия картинки не нужны никакие дополнительные приблуды в виде 3D-очков и прочего.
К слову, о 52 градусах. Угол обзора тем больше, чем меньше будет использоваться пикселей. Оксид графена обрабатывают путем фоторедукции, что создает пиксель, которому под силу изгибать цвет для голокартинки.
Разработчики полагают, что подобный подход в свое время сможет положить начало революции в разработке дисплеев, особенно — на мобильных устройствах.
Бристольский университет, Великобритания. Ультразвуковая голография.
Объект создается в воздухе с помощью множества ультразвуковых излучателей, направленных на облако водяного пара, которое также создается системой. Реализация, конечно, сложнее, чем в случае с привычными экрана, но все же.
В итоге получается проекция объекта, который можно не только рассмотреть со всех сторон, но и потрогать.
Частота колебаний такой интерференционной картины — от 0.4 до 500 Гц.
Одно из главных направлений деятельности, в котором разработчики предполагают полезное использование технологии — медицина. Врач сможет на основе данных медкарты и смоделированного органа “почувствовать” его. Также можно будет создавать объемные проекции каких-либо товаров на презентациях. Положительный эффект предрекают и при замене подобной технологией сенсорных дисплеев в местах массового пользования (электронные меню, терминалы, банкоматы). Как сложно и дорого будет это внедрить — само собой, уже второй вопрос.
А уж до чего могут дойти развлекательные сервисы определенной направленности — страшно (но интересно) подумать.
Ванкувер, Канада. Интерактивный голографический дисплей.
Вполне возможно, что уже в самом ближайшем будущем почти в каждой квартире будут голографические экраны, созданные по одному из описанных выше методов. Или же на основе какого-то нового, ведь ученые продолжают изобретать все новые и новые материалы, которые являются отличным подспорьем для развития технологий.
Сейчас трудно представить современного человека без смартфона в кармане, быть может, скоро таким же неотъемлемым элементом станут наручные часы с голографическим проектором. Или новый виток развития умных домов и умных автомобилей покажет, как еще можно использовать возможности голографии.
Последнее, кстати, уже не просто фантазия – к примеру, мы создаем первый голографический навигатор для автомобилей, обеспечивающий отображение дополненной реальности на лобовом стекле в зоне фокуса водителя. И кое-что расскажем о нем в одном из следующих постов.
Чтобы не пропустить – подписывайтесь на наш блог. И если у вас есть какие-то вопросы — не стесняйтесь задавать их в комментариях.