что такое гликолитические и окислительные мышечные волокна
Медленные мышечные волокна (окислительные)
Содержание
Мотонейроны медленных волокон имеют наиболее низкие пороги их активации, меньшие толщина аксона и скорость проведения возбуждения по нему. Аксон разветвляется на небольшое число концевых веточек и иннервирует небольшую группу мышечных волокон. У мотонейронов медленных волокон сравнительно низкая частота разрядов (6-10 имп/с). Они начинают функционировать уже при малых мышечных усилиях. Так, мотонейроны камбаловидной мышцы человека при удобном стоянии работают с частотой 4 имп/с. Устойчивая частота их импульсации составляет 6- 8 имп/с. С повышением силы сокращения мышцы частота разрядов мотонейронов медленных волокон повышается незначительно (до 25 имп/с). Мотонейроны медленных волокон способны поддерживать постоянную частоту разрядов в течение десятков минут.
Мышечные волокна медленных волокон развивают небольшую силу при сокращении в связи с наличием в них меньшего, по сравнению с быстрыми волокнами, количества миофибрилл. Скорость сокращения этих волокон в 1,5-2 раза меньше, чем быстрых. Основными причинами этого являются низкая активность миозин АТФ-азы и меньшие скорость выхода ионов кальция из саркоплазматического ре-тикулума и его связывания с тропонином в процессе возбуждения волокна.
Мышечные волокна медленных волокон малоутомляемы. Они обладают хорошо развитой капиллярной сетью. На одно мышечное волокно, в среднем, приходится 4-6 капилляров. Благодаря этому во время сокращения они обеспечиваются достаточным количеством кислорода. В их цитоплазме имеется большое количество митохондрий и высокая активность окислительных ферментов. Все это определяет существенную аэробную выносливость данных мышечных волокон и позволяет выполнять работу умеренной мощности длительное время без утомления.
Для чего нужны медленные мышечные волокна Править
Медленные или красные мышечные волокна выполняют следующие функции в организме:
Красные мышечные волокна и бодибилдинг Править
В исследованиях было продемонстрировано, что медленные мышечные волокна обладают слабой способностью к гипертрофии (разрастанию). Другие испытания показали, что соотношение быстрых и медленных мышечных волокон практически не меняется в результате специализированных тренировок. Это значит, что если в вашем организме преобладают красные мышечные волокна, то ваши результаты в бодибилдинге или пауэрлифтинге будут хуже, чем у среднего человека, в тоже время вы будете иметь преимущество в легкоатлетических видах спорта.
Как определить соотношение волокон? Править
Воспользуйтесь специальной разработанной экспертной системой, которая предложит выполнить вам несколько измерений, автоматически проанализирует их и выдаст адаптированный результат. Эта система имеет очень низкую погрешность, так как использует сразу несколько критериев расчета.
Данная экспертная система проводит расчет по нескольким важнейшим критериям: соотношение различных типов волокон, окружность запястья, скорость метаболизма, наличие заболеваний, длина мышцы и др.
В рунете существует система взглядов на рост медленных волокон (далее ММВ, они-же тип I):
Медленные волокна не растут от больших весов Править
Медленные волокна гипертрофируются от работы и с малыми, и с большими и со средними весами. [2] Более того, обнаружены случаи, когда в течение одного года, наблюдая за реакцией пожилых людей на тренировку, ничего кроме роста медленных волокон у них не было от работы с 75% от 1ПМ, и лишь к концу года к росту медленных волокон добавился рост быстрых. [3] Изучения синтеза белка, расхода аминокислот, активации клеток сателлитов также показывают, что медленные волокна реагируют точно также как и быстрые на работу с 70-80% от 1ПМ. [4] [5] [6]
Также существует факт смены цепочек миозина и типа волокон по скорости сокращения от тренировки, равно как и от отсутствия тренировок из-за травм и гиподинамии. Причем именно работа с большими весами снижает уровень миозина IIX. [7]
Работая с маленькими весами вы не повышаете рост медленных волокон, а, скорее, снижаете эффективность роста быстрых волокон. Но они, по-прежнему, активируются и растут даже от маленьких весов, особенно в тройных подходах один за другим. Помимо того, что от больших весов идет рост медленных волокон, но от них еще идет и рост ядер в клетках. [8]
Также работа с большими весами у тяжелоатлетов не только ведет к смене скорости сокращения мышц, но и вызывает рост митохондрий. [9] Но это происходит без роста МПК, что указывает на недостаточность одного лишь роста митохондрий и смены типа волокон. И подчеркивает, что нужна транспортная система для кислорода, которая не появляется просто от того, что у вас есть медленные волокна и митохондрии.
Медленные волокна не растут от работы на полную амплитуду Править
Невозможна смена типа волокна со II на I Править
Прием фармакологии для роста медленных волокон и роста выносливости Править
Работа низкой интенсивности рекрутирует медленные волокна Править
Также важно подобрать оптимум отдыха и времени спринтов для получения эффекта от тренировок, причём индивидуально. [42] Спортсмены элитного уровня в ЦВС делают большие объемы тренировок, и, понимая, что они рекрутируют 100% мышечных волокон, становится ясно, почему они получают от них результат. [43] Интервалы же для нетренированных активных людей не имели никакого преимущества перед объемными тренировками. [44]
Для медленных волокон нужны медленные движения Править
Определение типа мышечных волокон
Содержание
Типы мышечных волокон [ править | править код ]
Всем известно, что мышечные волокна (MB) различаются по своему типу:
Тестирование [ править | править код ]
Для того, чтобы удачно провести тестирование, надо быть в хорошей форме. Нет, вам не надо выходить на пик «массы» или силовых показателей, но и не стоит хвататься за тестирование сразу после длительных новогодних (майских) праздников.
Суть тестирования заключается в том, что вы берете вес, равный 80% от разового максимума (РМ) и делаете с ним повторения до отказа. После этого запоминаете (записываете), сколько повторов у вас получилось, и на этой основе делаете выводы. Для каждой мышечной группы (МГ) мы подобрали оптимальные упражнения.
ГРУДЬ: жим штанги лежа на плоской либо наклонной скамье;
БИЦЕПС: подъем EZ-штанги на бицепс;
СПИНА: тяга верхнего блока к груди сидя;
ПЛЕЧИ: жим штанги (гантелей) сидя;
НОГИ: сгибания и разгибания в тренажере;
ТРИЦЕПС: разгибания книзу на верхнем блоке (с прямой либо канатной рукоятью) или французский жим, если вы выполняете его регулярно.
КОЛИЧЕСТВО ПОДНЯТЫХ ШТАНГ [ править | править код ]
СИЛОВОЙ ТРЕНИНГ [ править | править код ]
ОБЪЕМНЫЙ ТРЕНИНГ [ править | править код ]
«ПАМПИНГ» [ править | править код ]
Классификация мышечных волокон
Всем известно, что каждый человек имеет индивидуальную мышечную композицию, то есть только ему присущее сочетание мышечных клеток (волокон) разных типов во всех скелетных мышцах. Вот только классификаций этих типов волокон несколько и они не всегда совпадают. Какие же классификации сейчас приняты?
Мышечные волокна делятся:
1. На белые и красные
2. На быстрые и медленные
3. На гликолитические, промежуточные и окислительные
4. На высокопороговые и низкопороговые.
Разберем все подробно.
Белые и красные. На поперечном сечении мышечное волокно может иметь различный цвет. Он зависит от количества мышечного пигмента миоглобина в саркоплазме мышечного волокна. Если содержание миоглобина в мышечном волокне большое, то волокно имеет красно-бурый цвет. Если миоглобина мало, то бледно-розовый. У человека почти в каждой мышце содержатся белые и красные волокна, а так же волокна слабо пигментированные. Миоглобин используется для транспортировки кислорода внутри волокна от поверхности к митохондриям, соответственно его количество определяется количеством митохондрий. Увеличивая количество митохондрий в клетке специальными тренировками, мы увеличиваем количество миоглобина и изменяем цвет волокна.
Быстрые и медленные. Классифицируются по активности фермента АТФ-азы и, соответственно, по скорости сокращения мышц. Активность данного фермента наследуется и тренировке не поддается. Каждое волокно имеет свою неизменную активность этого фермента. Освобождение энергии заключенной в АТФ, осуществляется благодаря АТФ-аза. Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Скорость одиночного гребка одинакова у всех мышц. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.
Гликолитические, промежуточные и окислительные. Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне. Напомню, что митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата. Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые необходимы для мышечного сокращения. Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.
По этому признаку мышечные волокна подразделяются на 3 группы:
1. Окислительные мышечные волокна. В них масса митохондрий так велика, что существенной прибавки ее в ходе тренировочного процесса уже не происходит.
2. Промежуточные мышечные волокна. В них масса митохондрий значительно снижена, и в мышце в процессе работы накапливается молочная кислота, однако достаточно медленно, и утомляются они гораздо медленнее, чем гликолитические.
3. Гликолитические мышечные волокна. В них очень незначительное количество митохондрий. Поэтому в них преобладает анаэробный гликолиз с накоплением молочной кислоты, отчего они и получили свое название. (Анаэробный гликолиз – расщепление глюкозы без кислорода до молочной кислоты и АТФ; аэробный гликолиз, или окисление – расщепление глюкозы в митохондриях с участием кислорода до углекислого газа, воды и АТФ.)
У не тренирующихся людей обычно быстрые волокна – гликолитические и промежуточные, а медленные – окислительные. Однако при правильных тренировках на увеличение выносливости промежуточные и часть гликолитических волокон можно сделать окислительными, и тогда они, не теряя в силе, перестанут утомляться.
Высокопороговые и низкопороговые. Классифицируются по уровню порога возбудимости двигательных единиц. Мышца сокращается под действием нервного импульса, который имеет электрическую природу. Каждая двигательная единица (ДЕ) включает в себя мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ у человека остается неизменным на протяжении всей жизни. Двигательные единицы имеют свой порог возбудимости. Если нервный импульс, посылаемый мозгом, имеет величину ниже этого порога, ДЕ пассивна. Если нервный импульс имеет пороговую для этой ДЕ величину или превышает ее, мышечные волокна сокращаются. Низкопороговые ДЕ имеют маленькие мотонейроны, тонкий аксон и сотни иннервируемых медленных мышечных волокон. Высокопороговые ДЕ имеют крупные мотонейроны, толстый аксон и тысячи иннервируемых быстрых мышечных волокон.
Как видите, две из представленных классификаций неизменны на протяжении всей жизни человека вне зависимости от тренировок, а две напрямую зависят именно от тренировок. В отсутствии двигательного режима, например в коме, или долгом нахождении в гипсе даже медленные мышечные волокна теряют свои митохондрии и соответственно миоглобин и становятся белыми и гликолитическими.
Поэтому в настоящее в спортивной науке считается неправильно говорить: «тренировки направленные на гипертрофию быстрых мышечных волокон», или «гиперплазия миофибрилл в медленных мышечных волокнах», хотя еще 10 лет назад это считалось допустимо даже в специализированных научных изданиях. Сейчас если мы говорим о тренировочном воздействии на МВ, то используем только классификацию по окислительному потенциалу мышцы. Классификации совпадают у не тренирующихся и у представителей скоростно-силовых и силовых видов спорта, где цель поднять максимальный вес в единичном повторении. В видах спорта требующих проявления выносливости классификации совпадать не будут.
Для наглядности приведу несколько утрированный, хотя теоритически вполне возможный пример. Сразу оговорюсь, что все цифры условные, и их не надо воспринимать буквально. Представим атлета, у которого лучший результат в жиме лежа 200 кг (без экипировки), 180 кг он может пожать на 3 раза, 150 кг на 10 раз. Из результатов видно, что окислительный потенциал мышц очень низок. Соотношение волокон, предположим, следующее: 90% быстрые, 10% медленные. По окислительному потенциалу 75% гликолитические, 15% промежуточные и 10% окислительные. Наилучших успехов в увеличении мышечной массы спортсмен добивается, когда работает в жиме по 6 повторений. Вес штанги достаточно большой чтобы рекрутировать 75% гликолитических волокон, а окислительный потенциал их настолько низок, что и 6-и повторений достаточно для необходимого закисления мышцы.
Но вот по какой-то причине этот атлет решил максимально увеличить свою выносливость и два месяца по 2-3 раза в день ежедневно работал над увеличением митохондрий в гликолитических и промежуточных МВ. Подробно об этой методике вы можете прочитать в 5-м номере «ЖМ», в моей статье «Тренировка выносливости». Плюс к этому атлет еще поддерживал свой силовой потенциал, выполняя по 1-2 повторениям с околомаксимальным весом раз в 7-10 дней. Два месяца достаточно для предельного насыщения мышц митохондриями. Через два месяца спортсмен проводит тестирование. Оно показывает, что сейчас у него 5% гликолитических волокон, 70% промежуточных и 25% окислительных. То есть гликолитические стали промежуточными, кроме 5% самых высокопороговых, а промежуточные стали окислительными. По активности АТФ-азы соотношение естественно не изменилось, так же 90% быстрые и 10% медленные. 200 кг он выжал на 1 раз, миофибриллы от таких тренировок не выросли, а упасть результату он не дал, используя в тренировках ММУ. 180 кг он выжал на 8 раз, а 150 кг на 25 раз. Огромное количество новых митохондрий «съедало» молочную кислоту не давая мышцам закислиться, что значительно увеличило их функциональность.
Теперь нашему атлету для увеличения мышечной массы работа на 6 повторений практически ничего не даст. Она задействует в нужном режиме только 5% оставшихся гликолитических волокон.
Сейчас ему придется работать минимум по 15 повторений в подходе, чтобы добиться необходимого для роста мышечной массы закисления мышц. И, дополнительно, включить в тренировку стато-динамические упражнения, поскольку только они способствуют гипертрофии окислительных мышечных волокон, которых у него теперь 25%, и игнорировать их уже нецелесообразно.
Как мы видим, один и тот же человек вынужден использовать абсолютно разные тренировочные программы для гипертрофии своих быстрых мышечных волокон после изменения их окислительного потенциала! Вот поэтому говорить о тренировочном воздействии на типы волокон, используя классификацию по активности АТФ-зы, считается некорректным. Только классификация по окислительным способностям мышц!
Типы мышечных волокон I Как их тренировать?
Zheleznyakova Alyona
Писатель и эксперт / Опубликовано
Поделиться этой страницей
Быстрые и медленные мышечные волокна
Быстрые мышечные волокна (гликолитические) – это быстро сокращающиеся волокна, которые отличаются большой силой, но высокой утомляемостью. Для удобства восприятия сократим их название до официально принятой аббревиатуры — ГМВ.
Медленные мышечные волокна (окислительные) – это волокна медленно сокращающиеся, они, наоборот, отличаются небольшой силой и низкой утомляемостью. Для удобства восприятия сократим их название до официально принятой аббревиатуры — ОМВ.
В нашем организме всё продумано до мелочей, и мышцы здесь не являются исключением. В зависимости от длительности и интенсивности нагрузок задействуются те или иные мышечные волокна, а их соотношение напрямую влияет на наши спортивные достижения. Вот почему приведенная ниже информация необходима для построения программы тренировок каждого спортсмена!
ГМВ vs ОМВ
Скорее всего, вы уже слышали о том, что волокна, из которых состоят наши мышцы, бывают двух типов: быстрые (ГМВ) и медленные (ОМВ). Если говорить точнее, существует также третий, промежуточный тип – переходные волокна.
Тип волокна определяется количеством нервных импульсов, посылающихся к волокну. Чем импульсов больше – тем, соответственно, выше активность адезинтрифосфатазы, а также выше скорость сокращения волокна.
Адезинтрифосфатаза – это особые ферменты класса гидролаз, ускоряющие процесс отщепления H3PO4 от молекул аденозинтрифосфата, в результате которого происходит высвобождение энергии, используемой для сокращения мышц.
ГМВ (белые)
Итак, почему же они «белые»? Всё дело в содержащихся в них капиллярах, которых значительно меньше, чем в ОМВ, отсюда и различия в цвете. По своей структуре ГМВ, как правило, в несколько раз толще, чем ОМВ. Их реакция на поступающие из мозга сигналы мгновенна, а скорость сокращения как минимум в два раза выше, чем у окислительных. Энергию гликолитические волокна получают за счет быстроусвояемых АТФ, креатинфосфатов и гликогена. Необходимо понимать, что эти энергетические источники иссякают всего за 30-60 секунд. В процессе получения энергии быстрыми волокнами не участвует кислород, благодаря чему энергия высвобождается практически мгновенно, однако ее запасы сильно ограничены. Исходя из этого, можно сделать вывод, что белые мышечные волокна подходят для высокоинтенсивных, но непродолжительных нагрузок. Однако их энергии не достаточно для выполнения многочисленных повторов и долгих, монотонных движений.
ОМВ (красные)
Они являются полной противоположностью гликолитическим по своему строению и функциям, и буквально созданы для легких и продолжительных нагрузок. Они способны накапливать, запасать энергию, а затем постепенно ее расходовать, благодаря митохондриям и миоглобину. Так что, если в ваших мышцах преобладают ОМВ — из вас вполне может получиться бегун на длинные дистанции, вам также подойдет аэробный спорт.
К сожалению, ОМВ имеют гораздо меньший потенциал в росте своих объемов и количества, чем гликолитические. Так что увеличение нашей мышечной массы в основном происходит за счет ГМВ.
Соотношение ОМВ и ГМВ в нашем организме предопределено генетикой и изменить его мы не в силах. У абсолютного большинства из нас преобладают окислительные волокна; у каждого четвертого – наоборот, процентное соотношение гликолитических волокон немного выше, чем красных. И лишь у некоторых спортсменов преобладание одних мышечных волокон над другими доходит до 85% – именно они обладают самыми высокими шансами добиться наибольших результатов в спорте.
Тренировка мышечных волокон
Основной целью бодибилдеров является увеличение мышечной массы, которое, в основном, зависит от роста ГМВ.
Гликолитические волокна
Для увеличения их объема используют интенсивные кратковременные нагрузки с применением больших весов (60-80% от повторного максимума) и при постоянном чередовании групп мышц. Увеличивается сечение волокон, а также энергетические запасы в мышцах, благодаря чему происходит гипертрофия мышц.
Длительность выполнения одного подхода – менее минуты. Время отдыха между подходами – 2-4 минуты. Средняя частота тренировок – вполне достаточно трех силовых тренировочных дней в неделю. Упражнения выполняются в среднем темпе, не быстром и не медленном, при полной амплитуде; отдельные фазы выполнения упражнений не выделяются.
Окислительные волокна
Упражнения выполняются с небольшим весом в 30-50% от того веса, с которым вы способны выполнить упражнение лишь с одним повторением. В подходе выполняется в среднем от 15 до 30 повторений. Подходов 5-8, можно больше. Необходимо выполнять упражнения в медленном или среднем темпе, без выделения определенных фаз движения. Амплитуда выполнения упражнений — полная.
Волокна на наглядном примере
Для того, чтобы полностью разобраться с тем, что же такое ГМВ и ОМВ и как они выглядят — нет ничего лучше, чем увидеть их своими глазами. И сделать это очень просто. Вы едите курятину? Дело в том, что именно куриное мясо как нельзя лучше отображает расположение гликолитических и окислительных волокон в организме птицы. Наверняка многие из вас замечали, что мясо курицы в районе грудки и крыльев — белое, к тому же оно практически не содержит жира, тогда как мясо куриных окорочков и бедер имеет темно-красный окрас и более высокое содержание жира. Всё дело в том, что курица, как и большинство других домашних птиц, практически всё своё время проводит стоя, а значит, мышцы ее ног подвергаются постоянной статической нагрузке (т.е. задействуются окислительные волокна). В то же время крылья используются крайне редко и лишь для быстрых энергичных взмахов, что характеризует работу гликолитических волокон.
Часть II
Продолжаю серию статей, посвящённых физиологии скайраннинга. Сегодня мы рассмотрим классификацию мышечных волокон и их изменение под воздействием различных видов нагрузки. К сожалению, многие люди не знакомы с этой информацией. Это очень грустно, потому что альпинисты должны быть сведущи в вопросах физиологии и подготовки.
Информация, публикуемая ниже, написана замечательным физиологом, нашим соотечественником Виктором Николаевичем Селуяновым. Его статьи доступны в интернете, как и большинство других материалов на тему физиологии и тренировок, но к сожалению, человек так устроен, что часто не в состоянии найти нужную информацию: некоторые материалы кажутся слишком сложными, некоторые слишком объёмными или простыми. Так произошло с моим тренером, который 12 лет бегал марафоны, «убивал» себя и не имел ни малейшего представления о физиологии. Он знал что такое интервальная работа, пано, темповик, углеводный обмен, длительная, в каких объёмах и когда нужно выполнять, но всё это происходило на уровне подсознания. Несколько лет назад он нашёл Селуяновские статьи, точнее их порекомендовала Ирина Реутович, которая тренировалась – нет, не по ним, Ирина Владимировна тренировалась всегда по интуиции, у неё очень сильный организм. А статьи она дала для того, чтобы Михаил Викторович (мой тренер) «разобрался» в них. Вот так, всей компанией мы стали зубрить термины и купили пульсометры. Результат оказался потрясающим.
Если раньше наши тренировки носили угнетающий характер, мы молотили, что есть мочи, считали, что этого не достаточно, и молотили ещё. То теперь, помимо того, что мы не чувствовали такой усталости, за счёт того, что грамотно распределяли нагрузку, наши результаты полезли вверх. Через несколько месяцев после начала тренировок по Селуянову мы уже могли бежать по 4 минуты на км на пульсе всего-лишь 140 ударов. Правда, потом мы стали готовиться к суточному бегу и в результате измотали себя, потому что не следили за мышцами, но уже тогда мы поняли что к чему. Именно поэтому я публикую то, что проверено мной и моими друзьями, на себе, за годы тренировок.
Помимо Селуяновских статей я хотел порекомендовать ещё две книги: первая Питт Фитзингер и Скотт Дуглас «Бег по шоссе для серьёзных бегунов» и вторая Дэнни Дрэйер «Ци бег». Последнюю кстати я прочитал по рекомендации известного российского марафонца Леонида Швецова. В его словах звучали сожаления, что эта книга не попалась ему тогда, когда он только начинал свою беговую карьеру. Если у кого-то возникнут проблемы с поиском этих материалов, я могу выслать их по электронной почте, пишите.
А теперь, собственно, по делу.
Словарь чайника
Классификация мышечных волокон. Изменение мышечной композиции под действием тренировки
Остановимся подробнее на классификации мышечных волокон. Первый способ — на быстрые мышечные волокна (БМВ) и медленные мышечные волокна (ММВ), эта классификация идет по ферменту АТФаза миофибрилл (сократительных элементов), тип которого может быть быстрым или медленным. Отсюда быстро сокращающиеся и медленно сокращающиеся МВ. Соотношение быстрых и медленных волокон определяется наследственной информацией, и изменить его мы практически не можем.
Второй способ – разделение МВ на окислительные и гликолитические, а они делятся уже не по миофибрилле, а по количеству митохондрий (структур клетки, где происходит потребление кислорода). Если есть митохондрии, то МВ окислительные, мало митохондрий или почти нет — гликолитические. Способность МВ к гликолизу также наследуется и определяется количеством ферментов гликолитического типа. Но вот количество митохондрий достаточно легко изменяется под воздействием тренировок. И с увеличением числа митохондрий МВ, бывшее гликолитическим, становится окислительным.
Поэтому с точки зрения тренировочного процесса для данного спортсмена не интересно деление МВ на медленные и быстрые – это имеет значение на этапе отбора. Вся логика построения тренировки идет не с точки зрения сокращения мышц по скорости, а направлена на превращение ГМВ в окислительные. Ибо в этом случае мы изменяем конкретного человека.
Вот вы начинаете правильно тренироваться и набираете митохондрий всё больше, больше и больше, мышцы переходят из формы гликолитической в окислительную, то есть с обилием митохондрий. И когда все мышечные волокна становятся окислительными — это предел спортивной формы, больше ничего не получится. Хотя тут есть одна хитрость. Дело в том, что окислительные волокна потребляют только жиры (пока есть запас жиров), а мощность при окислении жиров теряется. Отсюда получается некий парадокс — не надо делать так, чтобы мышцы были только окислительные, надо оставить немного гликолитических, иначе будете на жирах бежать, а мощность функционирования на жирах меньше примерно на 15%. Тогда те же самые мышцы будут более мощно работать. Понятно, что к лыжному спорту это тоже относится.
Влияние гликолитических и окислительных мышечных волокон на результат
Так вот, вы начинаете бежать среднюю дистанцию, разбегаетесь, и выходите на порог анаэробного обмена, он как раз соответствует моменту, когда функционирует все ОМВ и даже часть гликолитических. При этом получается, что человек выходит на крейсерскую скорость. Если у него только ОМВ, то он так и будет стабильно молотить. Прибавить не может и убавить не может (убавить, конечно, может, но это ему не надо, а прибавить не может, потому что не чем добавить), он прибежит с той же самой скоростью на финиш. Если с ним будет бежать точно такой же человек, но у которого будет запас ГМВ, то он на финише всегда прибавит. Значит, получается, средневик — это человек, у которого есть запас мышечных волокон, которые он может включить в работу, и лучше быстрых гликолитических, тогда финиш будет еще быстрее. Так же и у лыжников: тот, у кого есть запас ГМВ, на финише выиграет, если дистанция будет ровная. Но, увы, так не бывает.
Снова перейдем на более простой вид спорта, велосипедный (мне ближе). Рассмотрим спортсмена, у которого ОМВ только 15-20%, остальные — гликолитические. На равнине он набирает критическую скорость, превышает её, и начинает постепенно закисляться. Проходит 5-6 минут, он попадает в мертвую точку, пульс запредельный, дышать невозможно. Спортсмен начинает мощность снижать, и через 2-3 км выходит, наконец, на ту самую скорость, которая нужна. Вот классический вариант развития физиологических процессов на равнине. А если это не равнина, а холмистая местность, и холмы короткие, по длине такие, что на подъем затрачивается не больше 30 секунд? Тогда в этот холм спортсмен включает свои ГМВ, их хватает ровно на 30 секунд. В холм влетает, скорость большая, а со спуска работать уже практически не надо, ГМВ восстанавливаются, потом опять подъём, спуск и т.д. При этом он может влететь в этот подъём быстро и мощно, а другой, у кого только одни окислительные, такой мощности не получит, попытается отыграть на спуске, но это очень трудно и особенно добавить не удастся. В этих условиях спортсмен, у которого много ГМВ, начинает выигрывать.
Рассмотрим двух спортсменов в равных условиях, но у первого мышцы покрупнее (больше ГМВ), а у второго поменьше. Если это равнина, первый, скорее всего, выиграет, потому что включит на финише гликолитические волокна. По дистанции они будут одинаково ехать, а на финише первый выиграет с разницей в 1-2 секунды. Если холмистая местность, но с короткими холмами, выиграет первый, у которого больше гликолитических МВ, может еще больше выиграет, потому что он в каждую горку 1-2 секунды отыграет, а со спуска еще быстрее уедет. Но как только горка превращается в минутную, то на первой он 2 секунды отыграет за 30 секунд, второй немножко отстал, а потом на следующей горке второй ему 10 секунд ввезет, потому что у первого ГМВ перестанут нормально работать, закислятся, а у второго ничего не закисляется, он со стабильной скоростью до верха и доедет.
Физиология мышечного сокращения. Закон рекрутирования мышечных волокон
Напомним современные знания физиологии мышечного сокращения. Начнем с учебных знаний. В учебнике пишется, что существует процесс сокращения мышцы, и он обеспечивается некими механизмами энергообеспечения. Сам механизм сокращения связан с затратой молекул АТФ, молекулы АТФ должны быть внутри синтезированы с помощью молекулы КФ, а свободный креатин и свободный фосфат являются стимулом для разворачивания либо анаэробного гликолиза, либо аэробного гликолиза, либо окисления жиров. Вот классическая схема, современная, которая сейчас принята. Эта уточненная схема предложена Саксом, нашим ученым (у Чазова работает), для миокарда. В схеме существует КФ шунт, или, другими словами, все метаболические и энергетические пути, гликолиз и окисление жиров идут только через ресинтез КФ, а уже КФ идет непосредственно на ресинтез АТФ. Вот современные учебные знания.
В соответствии с ними, если спортсмен начинает двигаться в режиме «во всю», в течение примерно 15 секунд тратятся запасы АТФ и КФ (фосфагенов). Потом должен развернуться процесс, который стимулируется свободным креатином. Это, в первую очередь, процесс анаэробного гликолиза, который продолжается одну, может быть, полторы минуты, а вслед за этим должен развернуться процесс окислительного фосфорилирования, то есть начинается уже аэробный гликолиз. У нормального человека запасы углеводов снижаются где-то после 20-30 мин, а полностью заканчиваются через 45 мин. И только тогда, когда заканчиваются запасы углеводов в мышце и глюкоза в крови, начинает интенсивно развиваться процесс, связанный с окислением жиров. В случае передвижения со средней интенсивностью, при недостатке кислорода в крови, разворачивается анаэробный гликолиз. Это классическая схема.
Но эта схема не выдерживает критики, когда мы переходим с представлений уровня пробирки или одного единственного мышечного волокна к мышце в целом. Для единственного изолированного МВ это более или менее правильное описание. Но у нас не одно МВ, а множество, еще есть множество мышц и, следовательно, в нашу модель мы должны включить и эти элементы. Кроме того, у нас есть ОМВ и ГМВ, у нас есть те МВ, которые раньше рекрутируются при определенной интенсивности: если интенсивность меняется, то дополнительные мышечные волокна включаются. Короче говоря, есть закон рекрутирования МВ. Если все эти компоненты учесть, то мы построим новую модель, которая состоит из центральной нервной системы, которая управляет мотонейронами в спинном мозге, а мотонейроны управляют мышцами. И вот в зависимости от импульсации, которая идет сверху, рекрутируются сначала низкопороговые двигательные единицы, а потом всё более высокопороговые, когда, допустим, увеличивается сила отталкивания. И в этом случае получается совсем другая картина.
Например, вы начинаете двигаться с усилием 50% от максимума, максимум — это спринт (3-7 секунд), а 50% — это, условно говоря, бег на 1500 м или на 3000 м. Что будет происходить в организме? Вы рекрутируете столько мышечных волокон, сколько необходимо, чтобы держать скорость. Допустим, у вас 75% ОМВ. Допустим, вы рекрутировали половину всех мышечных волокон. Рекрутированные ОМВ отрабатывают 15 сек за счет АТФ и КФ, затем мощность их начинает падать где-то наполовину, и дальше эти ОМВ работают только в аэробном режиме, и пока используют только жиры. Не через 40 минут, а прямо сейчас, на 1-й минуте будут работать за счет окисления жиров! Потому что в ОМВ митохондрии, когда работают, выделяют наружу цитрат, который ингибирует (подавляет) гликолиз, поэтому могут окисляться только жиры (химию процесса окисления описывает цикл Кребса). Значит, не прошло и 15 секунд, как начали окисляться жиры. И вот мощность упала, а вам-то задание держать 50% от максимальной. Тогда вы обязаны рекрутировать еще порцию мышечных волокон. Допустим, дополнительные 25% вы рекрутируете, тоже окислительные, только они еще не работали, и они свои первые 15 секунд отрабатывают на АТФ и КФ. Получается, что на АТФ и КФ вы бежите уже не 15 секунд, а 30. То есть вы 15 секунд бежали на АТФ рекрутированных вначале МВ, и еще 15 секунд на следующих, но часть работы уже выполняется за счет аэробной продукции. Эти окислительные включились в работу, истратили свои запасы АТФ и КФ, не полностью, а наполовину, а вот эта половина поддерживается за счёт ресинтеза, то есть уже за счёт окислительных процессов, за счет жиров. И при заданной 50-процентной мощности вы обеспечиваете где-то 30-35% за счет окислительного фосфорилирования. При такой мощности где-то через 30-40 секунд вы выходите на предельные возможности этой мышцы в потреблении кислорода (она равна как раз 35% от максимальной мощности, которую эта мышца может развить). Это соответствует как раз АнП. Если нарисовать кривую потребления кислорода, то вы обнаружите плато, которое будет соответствовать АнП уже через 40 сек.
Далее спортсмен будет рекрутировать ГМВ, но маленькими порциями, исходя из нормы мощности, которую вы задали. Вот он в течение минуты будет рекрутировать гликолитические. Они тоже сначала на АТФ и КФ работают, а потом за счет гликолиза. Включенные ГМВ минуту отработают, закислятся и снизят мощность почти до нуля. Поэтому придется включать новые ГМВ до тех пор, пока у вас есть их запас. Если он у вас большой, то можно минуты 3-4 так поработать. А тот, у кого запаса ГМВ нет, начнет снижать мощность, и откажется от выполнения задания.
Из-за чего появляется специализация
В велосипедном спорте на равнине лишний вес не имеет принципиального значения. А если это гора, то даже в велосипедном спорте начинает играть роль собственный вес, спортсмен начинает тратить энергию на то, чтобы везти в подъем лишнюю мышечную массу. Поэтому чем длиннее дистанция, тем «вреднее» эта лишняя масса, и надо от нее всеми способами избавляться.
Как и везде, существует простая модель и сложная. В сложной модели, вы видите, процессы по-другому разворачиваются, и даже можно объяснить, зачем нужны гликолитические волокна. Пока дистанция относительно короткая, и если эта лишняя масса не очень мешает, то это очень выгодно. Чем длиннее дистанция и чем больше нагрузка, связанная с преодолением собственного веса, тем вреднее становится избыток ГМВ.
Центральные и периферические аэробные компоненты, их вклад в работоспособность
Внутри этой мышечной массы одни ОМВ, миофибриллы и митохондрии находятся в таком соотношении, что больше уже ничего прибавить нельзя (миофибриллы все оплетены митохондриями, как в миокарде). И тогда получается, что для потребления 3 л кислорода нужно иметь 10 кг активной мышечной массы, а если нужно потреблять 6 л — достаточно иметь только 20 кг активной мышечной массы.
Теперь посчитаем, сколько кислорода может доставить сердце. Если принять, что 1 литр крови переносит 160 мл кислорода (при нормальном уровне гемоглобина), то, умножив это количество на минутный объём кровообращения, мы получим возможности сердца по доставке кислорода. У обычного человека, мужчины, ударный объём составляет порядка 120-130 мл за один выброс крови. При пульсе 190 ударов в минуту получим 190 уд/мин * 130 мл * 160 мл = около 4 л/мин. Всё так и считается, достаточно просто. У супер-атлетов за один ударный цикл выбрасывается 240 мл, это соответствует 7-8 л/мин кислорода.
Тестирование уровней потребления кислорода поможет построить планы тренировок
Поскольку работоспособность может лимитировать либо одно, либо другое, то для того, чтобы разобраться с тем, чего не хватает конкретному спортсмену — его надо обязательное тестировать. Например, мы начинаем тестировать лыжников на уровне сборной команды, и получаем очень печальные цифры. Фиксируем показатели неоднократного победителя крупных российских марафонов (спортсмен каждый год в «десятке» на чемпионатах России), и видим: мышцы ног потребляют кислорода только 3,5 л/мин на уровне АнП — это результат порядка 1 разряда в велосипедном спорте. А лыжник должен потреблять ногами столько же, сколько велосипедист МСМК, причем это абсолютная цифра, не на килограмм веса. (В велосипедном спорте это не принципиально, там больше важно, что приходится на лобовую площадь.)
Спрашивается, а какое у него сердце? Если взять график ступенчатого теста, то на начальном участке, когда рекрутируются только ОМВ, наблюдается некая прямая между пульсом и мощностью. Потом эта кривая зависимости (потом кривая получается) начинает как-то изменяться. И, как правило, происходит увеличение темпа прироста пульса. Если продолжить начальный отрезок линии дальше, и вывести на пульс 190, то можно предсказать, что бы было с этим человеком, если бы он вышел на пульс 190, и при этом у него были бы только ОМВ. И тогда мы определили бы потенциальные возможности сердца по доставке кислорода к мышцам. (Подробнее об этом можно прочитать в следующем номере в разделе, посвященном интерпретации данных ступенчатого теста).
Так вот, потенциальная производительность сердца оказывается у него 7 л/мин. Это означает, что наш спортсмен имеет прекрасное сердце, огромное сердце, его тренировать специально не надо, а мышцы, прежде всего ног, — очень слабые, они в очень плохом состоянии, их надо готовить, чтобы они соответствовали нормативам международного класса.
Чтобы этот лыжник показал хорошие результаты, ему надо где-то 4,5 л/мин потреблять ногами. С показателем 4,5 л/мин он бы в сборной уже устойчиво стоял. При этом пульс у него при потреблении кислорода 4,5 л/мин должен быть не 190 уд/мин, а 150, потому что должен быть запас, на котором руки будут работать. Хорошо, предположим, мы с ним в тесте получаем 4,5 л/мин на пульсе 150 уд/мин, и после этого начинается закисление, и он отказывается от работы. Тогда мы говорим, что ноги у него в хорошем состоянии (4,5 л/мин для лыжника вполне достаточно). Потом начинаем тестировать руки, и оказывается, что руки у него потребляют где-то 1,5 л/мин, больше не будут потреблять (это из нашего опыта известно). Он потребляет руками 1,5 л/мин, мы прибавляем их к 4,5 л/мин ног, и получаем потребление кислорода равное 6 л/мин. Затем делим на его вес 70 кг и получаем 85 мл/кг/мин — это уровень олимпийских достижений.
Заключение
Хочется добавить о роли интуиции и знания. Про роль знания особо говорить не станем – этому посвящена вся статья. Что касается интуиции, приведем выдержку из книги Виктора Николаевича «Подготовка бегуна на средние дистанции»:
«Принцип интуиции. Каждый спортсмен должен опираться в тренировке не только на правила, но и на интуицию, поскольку имеются индивидуальные особенности адаптационных реакций».
Принцип интуиции можно переформулировать иначе – «Природа «умнее» любого ученого». Поэтому можно планировать тренировочный процесс, но при его реализации спортсмен должен «прислушиваться» к своим ощущениям, сопоставлять их с ожиданиями своими и тренера. Разумеется, необходимо как можно чаще контролировать состояние готовности различных систем и органов. Эта информация, вместе со знаниями, является основой продуктивной интуиции, творческих озарений в построении тренировочного процесса. В связи с этим действительно можно принять утверждение «Знание слепо без интуиции», когда идет работа с конкретным спортсменом, когда приходится вводить коррекцию в тренировочный процесс.
Тяжёлый изнурительный бег вверх по горной тропе, использовавшийся Бьорном Дали и Вегардом Ульвангом, чем-то напоминает бег по холмам в Новозеландии учеников Лидьярда.
При подготовке статьи использованы разработки В. Н. Селуянова