что такое гиперплазия мышц
Гиперплазия мышц
Содержание
Гиперплазия мышц [ править | править код ]
Гиперплазия (новолат. hyperplasia; др.-греч. ὑπερ- — сверх- + πλάσις — образование, формирование) — увеличение числа структурных элементов мышечной ткани (мышечных волокон) путём их деления. В отличие от гиперплазии, гипертрофия предполагает увеличение объемов клеток и саркоплазматических структур, без выраженного деления (новообразования ядер).
Исследования [1] подтверждают, что вклад гиперплазии в объем мышцы составляет менее 5% и носит более существенный характер только при использовании анаболических стероидов. Также гиперплазию могут вызывать блокаторы миостатина. Гормон роста при этом не вызывает гиперплазии.
Исследования [ править | править код ]
Гипертрофия или гиперплазия? [ править | править код ]
Чем же все-таки обусловлен рост мышечной массы, гипертрофией мышечных волокон ( увеличением объема мышечного волокна), или все-таки их гиперплазией ( увеличением количества мышечных волокон)? Официальная наука не подтверждает данные о возможности гиперплазии МВ у человека, хотя имеет достаточно много фактов подтверждающих наличие этого процесса у животных. В последние годы, тем не менее, стали часто публиковаться работы, которые ставят под сомнение официальную точку зрения.
Сторонников гиперплазии МВ поддержал и такой известный и заслуженно уважаемый спортсменами силовых видов спорта специалист, как Михаил Клестов, прекрасно знакомый читателям нашего журнала:
Очень логично, не правда ли? Но только если не усомниться в исходных данных. К сожалению, я слишком часто становился свидетелем крайней инертности царящей в науке. Вот, к примеру, сделано важное открытие в области физиологии, позволяющее полностью переосмыслить и изменить сложившийся стереотип в тренировках. Вы думаете, все сразу же начнут вносить коррективы? Нет. Во-первых, для того, чтобы об этой информации узнали нужно вложить огромные средства в ее продвижение. Сами ученые этим не занимаются, их дело научная работа. Если блестящее открытие не несет сразу огромные дивиденды, то желающих распространять о нем информацию или как то продвигать его не так много. Более того, оно часто встречается в штыки. Лет пятнадцать назад, в НИИ фундаментальных и прикладных проблем физкультуры и спорта, была неопровержимо доказана возможность локального жиросжигания. Доказана, научно обоснована и подтверждена огромным количеством статистического материала. Все это было опубликовано в научных изданиях, но инертность науки такова, что и сейчас на обучающих курсах фитнес-тренеров и семинарах продолжают твердить о невозможности локального жиросжигания. Показания таких видов тестирования, как индекс массы тела (ИМТ) и теста Карвонена, давно уже считаются ненаучными и ложными, но, тем не менее, их упрямо насаждают во всех фитнес-центрах.
К сожалению, у нас в стране нет такой службы, которая занималась бы мониторингом всех серьезных научных открытий опубликованных в научных изданиях и знакомила бы с этими открытиями наших специалистов. Поэтому мы решили обратиться с разъяснениями по этому вопросу к профессору Виктору Николаевичу Селуянову, который на протяжении нескольких десятилетий изучает и анализирует всю крупнейшие научные периодические издания мира.
Железный мир: Виктор Николаевич, что же все-таки является основной причиной роста мышц, гипертрофия или гиперплазия мышечных волокон? Были ли проведены какие-либо исследования в мире, которые остались неизвестны нашим тренерам и специалистам в области силового тренинга?
Виктор Селуянов: В 70-80-е годы встал вопрос за счет чего происходит рост мышц у спортсменов, особенно у культуристов. Тогда брали биопсию у спортсменов, и действительно оказалось, что размер поперечного сечения мышечного волокна у бодибилдеров был всего лишь на 30% больше, чем у обычных людей. А внешний вид обычного человека и бодибилдера отличается существенно. В 3-и, а может быть и в 4-е раза. Поэтому стали искать причины, по которым возможно подобное увеличение мышц. В СССР можно найти такого автора как Друздь, который стал изучать с помощью биопсии мышцы тренированных людей и в конце концов он нашел, что крупные мышечные волокна могут делиться. В них происходит так называемое продольное деление что возможно, помимо увеличения размера мышечного волокна возникают какие-то законы, по которым происходит их раздвоение. Таким образом, увеличивается количество мышечных волокон. При этом речь о миосателлитах не шла. Кстати до сих пор миосателлиты относятся к непознанной области знания. Пока считают, что миосателлиты не участвуют в гипертрофии МВ, то есть за счет миосателлитов не образуются новые волокна. Хотя сейчас пытаются воздействовать на них с помощью фармакологии и таким образом увеличить объем мышц, но будем считать что это пока область гипотетическая. Прошло время. Все больше и больше брали пробы биопсии у спортсменов с различным уровнем подготовленности. Если раньше считалось, что только на 30% можно гипертрофировать волокна, то последующие исследования показали, что размер мышечного волокна возможно увеличить в 3-4-6 и более раз! И фактор возможности гиперплазии МВ отошел в сторону. На сегодняшний день можно четко сказать, что количество мышечных волокон у человека задано от рождения. Если у одного человека быстро растут мышцы, то это не потому, что у него умножается количество МВ, а у него изначально было много МВ, А другой при всем желании не сможет нарастить большую мышечную массу, потому что у него изначально мало МВ.
ЖМ: Но если он может в 6 раз увеличить их поперечник.
Виктор Селуянов: Да, нарастить может, но выйти на высокий уровень в бодибилдинге нет. Он все равно будет проигрывать сопернику, у которого в 3 раза больше мышечных волокон. В конькобежном спорте, например, перспективность спортсмена определяют по размеру четырехглавой мышцы бедра. Если от рождения эта мышца не крупная, то он не получит хороший результат в беге на коньках. А если изначально крупная, то он за год-два способен выполнить норматив МС. Таких случаев много. Один из самых известных это конькобежец Олег Гончаренко. За два года тренировок стал чемпионом мира. Но он пришел с огромными ногами.
ЖМ: То есть, Вы полностью отрицаете возможность гиперплазии МВ?
Виктор Селуянов: Возможно этот фактор существует. Думаю, до 3 % мышечных волокон можно прибавить. Можно согласиться с Друздем по поводу продольного расщепления. Но пока еще никто не доказал, что гиперплазия МВ может быть существенным фактором для увеличения размеров мышц, для увеличения силы мышц и для увеличения спортивных достижений.
ЖМ: В бодибилдинге на протяжении уже многих лет ходит такое мнение, что гиперплазии МВ способствует прием гормона роста.
Виктор Селуянов: Нет, на увеличение количества МВ гормон роста, конечно, не работает. Он попадает в клетки, воздействует на ДНК, и в клетках начинает более активно строить компоненты, отвечающие за ее прочность. Особенно активен он в сухожилиях, связках, местах крепления мышечной ткани к сухожилию. Отчасти растет и мышечная ткань. Происходит гиперплазия миофибрилл в мышечном волокне. Вот и все, что на данный момент известно об анаболическом действии гормона роста, а остальное скорее выдумки, чем научно объяснимые факты.
ЖМ: Если в конце 80-х – 90-х годах уже проводились исследования доказавшие возможность увеличения поперечника МВ в 6 и более раз, почему в отечественной литературе нет таких данных? И до сих пор упрямо говорится о том, что более чем в 2 раза МВ невозможно увеличить
Виктор Селуянов: Возможно потому, что таких статей и таких исследований в мире не так много. Мне известно 3-4 статьи с подобными исследованиями. Для этого необходимо постоянно мониторить всю издающуюся научную литературу, чтобы из 1000-и статей выбрать 1-2 по интересующей теме, которые сделаны на высоком научном уровне и на контингенте высококлассных спортсменов. Сейчас я познакомлю вас с одной из очень достойных работ опубликованной еще в 1989 году. На русский язык она никогда не переводилась, перевод мой.
Сравнительный анализ мышечных волокон элитных бодибилдеров мужчин и женщин [16]
Проблема степени гипертрофии мышечных волокон изучалась на высококвалифицированных бодибилдерах. Мужчин – 8 и женщин 5. Средние антропометрические показатели составили соответственно 173см, 87 кг и 166см и 62 кг.
Объектом исследования были сгибатели локтевого сустава, длинная головка двуглавой мышцы плеча и плечевая мышца. Из этих мышц была взята биопсия. Проба ткани была заморожена в жидком азоте. Мышечная композиция определялась по Bergstrom. Оценивалась активность АТФ-азы миозина. Поперечное сечение мышечных волокон измерялось под микроскопом (х15000). Общая площадь мышцы измерялась по фотографии среза мышц после компьютерной томографии. Делением площади мышцы на сечение среднего мышечного волокна определялось количество МВ в мышце.
В результате доля 2 типа МВ (быстрые) оказалась в районе 50%. Доля неконтрактильной части составила 9-10%. Площадь поперечного сечения в среднем составила у 1-типа 7,200мм2 и 4,700мм2, 2-типа 11,400 мм2 и 5,000мм2 у мужчин и женщин соответственно. Особенный интерес представляют данные о распределении мышечных волокон по поперечному сечению. На рис. видно, что размер мышечных волокон колеблется от 2000мм2 до 15000мм2 у женщин и до 20000мм2 у мужчин. Обхват плеча у мужчин составил 47см, если выполнить перерасчет, с учетом уменьшения поперечного сечения МВ до нормы нетренированного человека (3000-4000мм2), то обхват плеча составит 27-30см. Следовательно, у бодибилдеров рост мышечной массы был связан только с гипертрофией МВ (гиперплазией миофибрилл). Для гиперплазии мышечных волокон «места не остается».
Неконтрактильная часть МВ, то есть несокращающаяся. Это то, что входит в мышечную клетку помимо миофибрилл. К ней относятся митохондрии, саркоплазматический ретикуллум и тд. Иногда говорят про митохондриальную и саркоплазматическую гипертрофию мышц. Так вот они укладывается в эти 9-10%. Когда профессиональные гистологи слышат про эти виды гипертрофий для увеличения мышечной массы и про специальные тренировки направленные на это, они начинают смеяться. Настолько ничтожен может быть их вклад в рост мышц..
Гиперплазия мышц
Содержание
Гиперплазия мышц [ править | править код ]
Гиперплазия (новолат. hyperplasia; др.-греч. ὑπερ- — сверх- + πλάσις — образование, формирование) — увеличение числа структурных элементов мышечной ткани (мышечных волокон) путём их деления. В отличие от гиперплазии, гипертрофия предполагает увеличение объемов клеток и саркоплазматических структур, без выраженного деления (новообразования ядер).
Исследования [1] подтверждают, что вклад гиперплазии в объем мышцы составляет менее 5% и носит более существенный характер только при использовании анаболических стероидов. Также гиперплазию могут вызывать блокаторы миостатина. Гормон роста при этом не вызывает гиперплазии.
Исследования [ править | править код ]
Гипертрофия или гиперплазия? [ править | править код ]
Чем же все-таки обусловлен рост мышечной массы, гипертрофией мышечных волокон ( увеличением объема мышечного волокна), или все-таки их гиперплазией ( увеличением количества мышечных волокон)? Официальная наука не подтверждает данные о возможности гиперплазии МВ у человека, хотя имеет достаточно много фактов подтверждающих наличие этого процесса у животных. В последние годы, тем не менее, стали часто публиковаться работы, которые ставят под сомнение официальную точку зрения.
Сторонников гиперплазии МВ поддержал и такой известный и заслуженно уважаемый спортсменами силовых видов спорта специалист, как Михаил Клестов, прекрасно знакомый читателям нашего журнала:
Очень логично, не правда ли? Но только если не усомниться в исходных данных. К сожалению, я слишком часто становился свидетелем крайней инертности царящей в науке. Вот, к примеру, сделано важное открытие в области физиологии, позволяющее полностью переосмыслить и изменить сложившийся стереотип в тренировках. Вы думаете, все сразу же начнут вносить коррективы? Нет. Во-первых, для того, чтобы об этой информации узнали нужно вложить огромные средства в ее продвижение. Сами ученые этим не занимаются, их дело научная работа. Если блестящее открытие не несет сразу огромные дивиденды, то желающих распространять о нем информацию или как то продвигать его не так много. Более того, оно часто встречается в штыки. Лет пятнадцать назад, в НИИ фундаментальных и прикладных проблем физкультуры и спорта, была неопровержимо доказана возможность локального жиросжигания. Доказана, научно обоснована и подтверждена огромным количеством статистического материала. Все это было опубликовано в научных изданиях, но инертность науки такова, что и сейчас на обучающих курсах фитнес-тренеров и семинарах продолжают твердить о невозможности локального жиросжигания. Показания таких видов тестирования, как индекс массы тела (ИМТ) и теста Карвонена, давно уже считаются ненаучными и ложными, но, тем не менее, их упрямо насаждают во всех фитнес-центрах.
К сожалению, у нас в стране нет такой службы, которая занималась бы мониторингом всех серьезных научных открытий опубликованных в научных изданиях и знакомила бы с этими открытиями наших специалистов. Поэтому мы решили обратиться с разъяснениями по этому вопросу к профессору Виктору Николаевичу Селуянову, который на протяжении нескольких десятилетий изучает и анализирует всю крупнейшие научные периодические издания мира.
Железный мир: Виктор Николаевич, что же все-таки является основной причиной роста мышц, гипертрофия или гиперплазия мышечных волокон? Были ли проведены какие-либо исследования в мире, которые остались неизвестны нашим тренерам и специалистам в области силового тренинга?
Виктор Селуянов: В 70-80-е годы встал вопрос за счет чего происходит рост мышц у спортсменов, особенно у культуристов. Тогда брали биопсию у спортсменов, и действительно оказалось, что размер поперечного сечения мышечного волокна у бодибилдеров был всего лишь на 30% больше, чем у обычных людей. А внешний вид обычного человека и бодибилдера отличается существенно. В 3-и, а может быть и в 4-е раза. Поэтому стали искать причины, по которым возможно подобное увеличение мышц. В СССР можно найти такого автора как Друздь, который стал изучать с помощью биопсии мышцы тренированных людей и в конце концов он нашел, что крупные мышечные волокна могут делиться. В них происходит так называемое продольное деление что возможно, помимо увеличения размера мышечного волокна возникают какие-то законы, по которым происходит их раздвоение. Таким образом, увеличивается количество мышечных волокон. При этом речь о миосателлитах не шла. Кстати до сих пор миосателлиты относятся к непознанной области знания. Пока считают, что миосателлиты не участвуют в гипертрофии МВ, то есть за счет миосателлитов не образуются новые волокна. Хотя сейчас пытаются воздействовать на них с помощью фармакологии и таким образом увеличить объем мышц, но будем считать что это пока область гипотетическая. Прошло время. Все больше и больше брали пробы биопсии у спортсменов с различным уровнем подготовленности. Если раньше считалось, что только на 30% можно гипертрофировать волокна, то последующие исследования показали, что размер мышечного волокна возможно увеличить в 3-4-6 и более раз! И фактор возможности гиперплазии МВ отошел в сторону. На сегодняшний день можно четко сказать, что количество мышечных волокон у человека задано от рождения. Если у одного человека быстро растут мышцы, то это не потому, что у него умножается количество МВ, а у него изначально было много МВ, А другой при всем желании не сможет нарастить большую мышечную массу, потому что у него изначально мало МВ.
ЖМ: Но если он может в 6 раз увеличить их поперечник.
Виктор Селуянов: Да, нарастить может, но выйти на высокий уровень в бодибилдинге нет. Он все равно будет проигрывать сопернику, у которого в 3 раза больше мышечных волокон. В конькобежном спорте, например, перспективность спортсмена определяют по размеру четырехглавой мышцы бедра. Если от рождения эта мышца не крупная, то он не получит хороший результат в беге на коньках. А если изначально крупная, то он за год-два способен выполнить норматив МС. Таких случаев много. Один из самых известных это конькобежец Олег Гончаренко. За два года тренировок стал чемпионом мира. Но он пришел с огромными ногами.
ЖМ: То есть, Вы полностью отрицаете возможность гиперплазии МВ?
Виктор Селуянов: Возможно этот фактор существует. Думаю, до 3 % мышечных волокон можно прибавить. Можно согласиться с Друздем по поводу продольного расщепления. Но пока еще никто не доказал, что гиперплазия МВ может быть существенным фактором для увеличения размеров мышц, для увеличения силы мышц и для увеличения спортивных достижений.
ЖМ: В бодибилдинге на протяжении уже многих лет ходит такое мнение, что гиперплазии МВ способствует прием гормона роста.
Виктор Селуянов: Нет, на увеличение количества МВ гормон роста, конечно, не работает. Он попадает в клетки, воздействует на ДНК, и в клетках начинает более активно строить компоненты, отвечающие за ее прочность. Особенно активен он в сухожилиях, связках, местах крепления мышечной ткани к сухожилию. Отчасти растет и мышечная ткань. Происходит гиперплазия миофибрилл в мышечном волокне. Вот и все, что на данный момент известно об анаболическом действии гормона роста, а остальное скорее выдумки, чем научно объяснимые факты.
ЖМ: Если в конце 80-х – 90-х годах уже проводились исследования доказавшие возможность увеличения поперечника МВ в 6 и более раз, почему в отечественной литературе нет таких данных? И до сих пор упрямо говорится о том, что более чем в 2 раза МВ невозможно увеличить
Виктор Селуянов: Возможно потому, что таких статей и таких исследований в мире не так много. Мне известно 3-4 статьи с подобными исследованиями. Для этого необходимо постоянно мониторить всю издающуюся научную литературу, чтобы из 1000-и статей выбрать 1-2 по интересующей теме, которые сделаны на высоком научном уровне и на контингенте высококлассных спортсменов. Сейчас я познакомлю вас с одной из очень достойных работ опубликованной еще в 1989 году. На русский язык она никогда не переводилась, перевод мой.
Сравнительный анализ мышечных волокон элитных бодибилдеров мужчин и женщин [16]
Проблема степени гипертрофии мышечных волокон изучалась на высококвалифицированных бодибилдерах. Мужчин – 8 и женщин 5. Средние антропометрические показатели составили соответственно 173см, 87 кг и 166см и 62 кг.
Объектом исследования были сгибатели локтевого сустава, длинная головка двуглавой мышцы плеча и плечевая мышца. Из этих мышц была взята биопсия. Проба ткани была заморожена в жидком азоте. Мышечная композиция определялась по Bergstrom. Оценивалась активность АТФ-азы миозина. Поперечное сечение мышечных волокон измерялось под микроскопом (х15000). Общая площадь мышцы измерялась по фотографии среза мышц после компьютерной томографии. Делением площади мышцы на сечение среднего мышечного волокна определялось количество МВ в мышце.
В результате доля 2 типа МВ (быстрые) оказалась в районе 50%. Доля неконтрактильной части составила 9-10%. Площадь поперечного сечения в среднем составила у 1-типа 7,200мм2 и 4,700мм2, 2-типа 11,400 мм2 и 5,000мм2 у мужчин и женщин соответственно. Особенный интерес представляют данные о распределении мышечных волокон по поперечному сечению. На рис. видно, что размер мышечных волокон колеблется от 2000мм2 до 15000мм2 у женщин и до 20000мм2 у мужчин. Обхват плеча у мужчин составил 47см, если выполнить перерасчет, с учетом уменьшения поперечного сечения МВ до нормы нетренированного человека (3000-4000мм2), то обхват плеча составит 27-30см. Следовательно, у бодибилдеров рост мышечной массы был связан только с гипертрофией МВ (гиперплазией миофибрилл). Для гиперплазии мышечных волокон «места не остается».
Неконтрактильная часть МВ, то есть несокращающаяся. Это то, что входит в мышечную клетку помимо миофибрилл. К ней относятся митохондрии, саркоплазматический ретикуллум и тд. Иногда говорят про митохондриальную и саркоплазматическую гипертрофию мышц. Так вот они укладывается в эти 9-10%. Когда профессиональные гистологи слышат про эти виды гипертрофий для увеличения мышечной массы и про специальные тренировки направленные на это, они начинают смеяться. Настолько ничтожен может быть их вклад в рост мышц..
Методы гиперплазии миофибрилл в мышечных волокнах
В. Н. Селуянов, В. А. Рыбаков, М. П. Шестаков
Глава 4. Методы управления адаптационными процессами
Для управления адаптационными процессами в определенных клетках органов тела человека необходимо знать устройство органа, механизм его функционирования, факторы, обеспечивающие целевое направление адаптационных процессов. Модель организма спортсмена построена в предыдущих главах. На основе этой модели может быть реализовано теоретическое мышление в виде умозрительного или компьютерного (математического) моделирования. В ходе имитационного моделирования находятся различные варианты принятия управленческих решений, из которых в дальнейшем выбирается наиболее подходящая к данным условиям технология спортивной подготовки. Технология управления адаптационными процессами, реализуемая с помощью физических упражнений, характеризуется следующими параметрами: интенсивность сокращения мышц (ИС), средняя интенсивность упражнения (ИУ), продолжительность (П), интервал отдыха (ИО), количество повторений упражнения (КП), интервал отдыха до следующей тренировки (ИОТ). Анализ, построенной модели показал, что в мышечных волокнах можно изменить массы органелл миофибрилл, митохондрий, гликогена для изменения функциональных возможностей спортсмена. Покажем, как можно управлять синтезом (гиперплазией) этих структур.
4.1. Методы гиперплазии миофибрилл в мышечных волокнах
Цель силовой подготовки — увеличить число миофибрилл в мышечных волокнах. Силовое воздействие человека на окружающую среду есть следствие функционирования мышц. Мышца состоит из мышечных волокон — клеток. Для увеличения силы тяги МВ необходимо добиться гиперплазии (увеличения) миофибрилл. Этот процесс возникает при ускорении синтеза и при прежних темпах распада белка. Исследования последних лет позволили выявить четыре основных фактора, определяющих ускоренный синтез белка в клетке:
1. Запас аминокислот в клетке. (Аминокислоты в клетке накапливаются после потребления пищи богатой белками.)
2. Повышенная концентрация анаболических гормонов в крови как результат психического напряжения (Holloszy et al., 1971; Schants, 1986).
3. Повышенная концентрация «свободного» креатина в МВ (Walker, 1979).
4. Повышенная концентрация ионов водорода (Панин Л. Е., 1983).
Второй, третий и четвертый факторы прямо связаны с содержанием тренировочных упражнений.
Механизм синтеза органелл в клетке, в частности, миофибрилл, можно описать следующим образом.
В ходе выполнения упражнения энергия АТФ тратится на образование актин миозиновых соединений, выполнение механической работы. Ресинтез АТФ идет благодаря запасам КрФ. Появление свободного Кр активизирует деятельность всех метаболических путей, связанных с образованием АТФ (гликолиз в цитоплазме, аэробное окисление в различных митохондриях, например, миофибриллярных, а также в находящихся в ядрышке и на мембранах СПР). В быстрых мышечных волокнах (БМВ) преобладает мышечная лактат-дегидрогеназа (М ЛДГ), поэтому пируват, образующийся в ходе анаэробного гликолиза, в основном трансформируется в лактат. В ходе такого процесса в клетке накапливаются ионы Н. Мощность гликолиза меньше мощности затрат АТФ, поэтому в клетке начинают накапливаться Кр, Н, La, АДФ.
Наряду с важной ролью в определении сократительных свойств в регуляции энергетического метаболизма, накопление свободного креатина в саркоплазматическом пространстве служит мощным эндогенным стимулом, возбуждающим белковый синтез в скелетных мышцах (Walker J., 1979; Волков Н. И. с соав., 1983). Показано, что между содержанием сократительных белков и содержанием креатина имеется строгое соответствие. Свободный креатин, видимо, влияет на синтез и РНК, т. е. на транскрипцию в ядрышках МВ, либо активирует деятельность ядерных митохондрий, которые начинают в большей мере вырабатывать АТФ, которая используется для транскрипции ДНК (Walker, 1979).
Предполагается, что повышение концентрации ионов водорода вызывает лабилизацию мембран (увеличение размеров пор в мембранах, это ведет к облегчению проникновения гормонов в клетку), активизирует действие ферментов, облегчает доступ гормонов к наследственной информации, к молекулам ДНК (Панин Л. Е., 1983). В ответ на одновременное повышение концентрации Кр и Н интенсивнее образуются РНК. Срок жизни и РНК короток, несколько секунд в ходе выполнения силового упражнения плюс пять минут в паузе отдыха (Виру А. А., 1981). Затем молекулы и РНК разрушаются.
Теоретический анализ показывает, что при выполнении силового упражнения до отказа, например 10 приседаний со штангой с темпом одно приседание за 3–5 с, упражнение длится до 50 с. В мышцах в это время идет циклический процесс: опускание и подъем со штангой 1–2 с выполняется за счет запасов АТФ; за 2–3 с паузы, когда мышцы становятся малоактивными (нагрузка распространяется вдоль позвоночного столба и костей ног), идет ресинтез АТФ из запасов КрФ, а КрФ ресинтезируется за счет аэробных процессов в ОМВ и анаэробного гликолиза в ГМВ. В связи с тем, что мощность аэробных и гликолитических процессов значительно ниже скорости расхода АТФ, запасы КрФ постепенно исчерпываются, продолжение упражнения заданной мощности становится невозможным наступает отказ. Одновременно с развертыванием анаэробного гликолиза в мышце накапливаются лактат и ионы водорода (о справедливости высказываний говорят данные исследований на установках ЯМР; Sapega et al, 1987). Ионы водорода по мере накопления разрушают связи в четвертичных и третичных структурах белковых молекул, это приводит к изменению активности ферментов, лабилизации мембран, облегчению доступа гормонов к ДНК. Очевидно, что чрезмерное накопление или увеличение длительности действия кислоты даже не очень большой концентрации может привести к серьезным разрушениям, после которых разрушенные части клетки должны будут элиминироваться (Salminen et al, 1984). Заметим, что повышение концентрации ионов водорода в саркоплазме стимулирует развитие реакции перекисного окисления (Хочачка и Сомеро, 1988). Свободные радикалы способны вызвать фрагментацию митохондриальных ферментов, протекающую наиболее интенсивно при низких, характерных для лизосом, значениях рН. Лизосомы участвуют в генерации свободных радикалов, в катаболических реакциях. В частности, в исследовании А. Salminen e. a. (1984) на крысах было показано, что интенсивный (гликолитический) бег вызывает некротические изменения и увеличение активности лизосомальных ферментов. Совместное действие ионов водорода и свободного Кр приводит к активизации синтеза РНК. Известно, что Кр присутствует в мышечном волокне в ходе упражнения и в течение 30–60 с после него, пока идет ресинтез КрФ. Поэтому можно считать, что за один подход к снаряду спортсмен набирает около одной минуты чистого времени, когда в его мышцах происходит образование и РНК. При повторении подходов количество накопленной и РНК будет расти, но одновременно с повышением концентрации ионов Н; поэтому возникает противоречие, то есть можно разрушить больше, чем потом будет синтезировано. Избежать этого можно при проведении подходов с большими интервалами отдыха или тренировках несколько раз в день с небольшим числом подходов в каждой тренировке.
Вопрос об интервале отдыха между днями силовой тренировки связан со скоростью реализации и РНК в органеллы клетки, в частности, в миофибриллы. Известно (Дин, 1981; Виру А. А., 1981), что сама и РНК распадается в первые десятки минут после упражнения, однако структуры, образованные на их основе, синтезируются в органеллы на в течение 4–7 дней. В подтверждение можно напомнить данные о ходе структурных преобразований в мышечных волокнах и согласующихся с ними субъективных ощущениях после работы мышцы в эксцентрическом режиме: первые 3–4 дня наблюдаются нарушения в структуре миофибрилл (около Z-пластинок) и сильные болевые ощущения в мышце, затем МВ нормализуется и боли проходят (Прилуцкий Б. И., 1989; Friden, 1984, 1988). Можно привести также данные собственных исследований (Cелуянов В. Н. с соав., 1990, 1996), в которых было показано, что после силовой тренировки концентрация мочевины (Мо) в крови утром натощак в течение 3–4 дней находится ниже обычного уровня, что свидетельствует о преобладании процессов синтеза над деградацией.
Логика происходящего при выполнении силовой тренировки представляется в основном корректной, однако доказать ее истинность может лишь эксперимент. Проведение эксперимента требует затрат времени, привлечения испытуемых и др., а если логика окажется где-то порочной, то придется вновь проводить эксперимент. Понятно, что такой подход возможен, но малоэффективен. Более продуктивен подход с применением модели организма человека и имитационным моделированием физиологических функций и структурных, адаптационных перестроек в системах и органах. На ЭВМ возможно в короткое время систематически изучать процессы адаптации и проверять корректность планирования физической подготовки. Эксперимент же можно проводить уже после того, как будет ясно, что грубых ошибок в планировании не допущено.
Из описания механизма должно быть ясно, что ОМВ и БГВ должны тренироваться в ходе выполнения разных упражнений, разными методиками.