что такое геометрическая точность станка
Проверка токарных станков на геометрическую и технологическую точность
Говоря о точности токарного станка имеется ввиду соответствие данных паспорта оборудования следующим параметрам:
После окончательной сборки и проверки на заводе, а также после ремонтов станки получают акт о приемке, и только после этого, вводятся в эксплуатацию.
Требования к точности указываются в паспорте станков.
Выполнение измерения для выявления погрешностей следует производить регулярно в соответствии с нормативами ГОСТ.
Скачать ГОСТ 8-82 «Станки металлорежущие. Общие требования к испытаниям на точность»
Скачать ГОСТ 18097-93 «Станки токарно-винторезные и токарные. Основные размеры. Нормы точности».
В процессе использования токарного оборудования происходит износ его деталей, т.к. при обработке изделий появляются силы, которые производят различные деформации. При работе станок нагревается и под воздействием температуры образуются тепловые деформации. Все эти дефекты оказывают отрицательное влияние на качество обрабатываемых деталей. И для того чтобы восстановить паспортные показатели станка периодически следует ремонтировать изношенные детали.
Качественное испытание токарных станков в соответствии с государственным стандартом во многом зависит от того, насколько правильно он установлен на испытательном стенде. Установка на стенд должна происходить строго, соблюдая установочный чертеж. Самым распространенным методом, является установка на количество опор более 3-х. Отметим, что все двигающиеся части проверяемого станка должны находится в средних положениях.
Геометрическая точность токарного станка характеризует качество изготовления деталей, поэтому установка заготовки должна осуществляться на геометрическую правильную поверхность.
Для определения степени износа нужно установить линейку поочередно на каждую из направляющих станины. После этого, щупом определяется расстояние между направляющими и контрольной линейкой. Допустимое значение такого износа согласно государственного стандарта не должно превышать 0,02 мм.
Не мало важным фактором является соответствие горизонтальности направляющих станины. Определить ее можно с помощью перемещения специального уровня вдоль поверхности направляющих, который покажет значение имеющегося отклонения. Предельно допустимое отклонение по ГОСТ не может превышать значение 0,05 мм. А параллельность между направляющими станины для упорной (задней бабки) и каретки можно проверить с помощью специального измерительного индикатора. Его необходимо закрепить на каретке с суппортом и с помощью перемещения каретки выявить величину отклонения.
Также точность токарного станка поможет определить биение вращающегося шпинделя, в который крепится заготовка. Обязательно при этом соблюдать параллельность между осью шпинделя и направляющими станины. Во время проверки в отверстие вала устанавливают специальную контрольную оправку и на протяжении всей ее длины проверяют ее на биение.
Осуществляя технологическую проверку на точность стоит обратить внимание также и на вращение шеек вращающегося вала. Биение при их вращении — не допустимо. В резцовой головке необходимо закрепить индикатор, затем уперев его штифт в шейке шпинделя произвести измерения. По ГОСТ значение не должно превышать 0,01 мм. Не допустимым будет при вращении шпинделя, чтобы он отклонялся от оси.
Проверка биения шпинделя: а — проверка биения шейки шпинделя; б — проверка осевого перемещения шпинделя; в — проверка биения переднего центра
Также одним из важных измерений при проверке токарного станка на точность является определение точности шага ходового винта. Величина отклонения в соответствии с ГОСТ определяется с помощью следующей методики:
Проверка точности шага ходового винта
Основные погрешности формы обрабатываемых заготовок:
Инструмент, применяемые при испытаниях:
При выполнении измерений следует использовать только те инструменты, которые прошли метрологическую поверку с учтенной погрешностью.
Что такое геометрическая точность станка
ГОСТ Р ИСО 230-1-2010
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
МЕТОДЫ ИЗМЕРЕНИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ
Machine tools tests. Part 1. Measurement techniques of geometrical parametrs
Дата введения 2011-01-01
Предисловие
1 ПОДГОТОВЛЕН Открытым акционерным обществом «Экспериментальный научно-исследовательский институт металлорежущих станков» (ОАО «ЭНИМС») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 70 «Станки»
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5)
6 ПЕРЕИЗДАНИЕ. Март 2020 г.
Введение
Предметом серии стандартов ИСО 230 является максимально широкая и полная информация о методах контроля и испытаний металлорежущих станков, которые следует проводить во время их проверки, приемки, технического обслуживания.
Серия стандартов ИСО 230 состоит из следующих частей, под общим названием «Методы испытаний металлорежущих станков»:
— Часть 1. Точность геометрических параметров станков, работающих на холостом ходу или на чистовых режимах;
— Часть 2. Определение точности и повторяемости позиционирования осей станков с числовым программным управлением;
— Часть 3. Определение теплового воздействия;
— Часть 4. Испытания на отклонения круговых траекторий для станков с числовым программным управлением;
— Часть 5. Определение уровня излучения шума;
— Часть 6. Определение точности позиционирования по объемным и поверхностным диагоналям (испытания на смещение диагоналей).
1 Область применения
Настоящий стандарт распространяется на стационарно установленные станки с механическим приводом, используемые для обработки металла, дерева и других материалов путем снятия стружки, шлифования или пластической деформации.
Настоящий стандарт устанавливает методы измерения точности металлорежущих станков при работе без нагрузки (на холостом ходу) и (или) на чистовых режимах путем проверки точности геометрических параметров. Эти методы могут быть применимы также к другим типам промышленных машин, для которых необходимо осуществлять проверки геометрических параметров и испытания в работе.
В настоящем стандарте описаны только методы измерения геометрической точности. В частности, в нем не рассматриваются вопросы проверки эксплуатационных свойств станка (уровни вибрации, смещение элементов станка и т.п.), проверки рабочих характеристик (скорости перемещений и вращений, величины подачи, энергопотребление), т.к. эти проверки должны выполняться отдельно, независимо от проверки геометрической точности.
Допускается использование также других методов и средств измерения, не приведенных в настоящем стандарте, обеспечивающих требуемую точность и достоверность определения соответствующих геометрических параметров.
2 Общие положения
2.1 Определения, относящиеся к проверкам геометрической точности
Необходимо отличать чисто геометрические определения от того, как они трактуются в настоящем стандарте в качестве метрологических определений.
Геометрические определения абстрактны и относятся к идеальным линиям и поверхностям. Из этого следует, что геометрические определения в ряде случаев невозможно применить на практике. Они не учитывают физических реалий и существующей практики проверки геометрических параметров.
Метрологические определения реальны, поскольку они учитывают доступные для измерения линии и поверхности, обладающие реальными физическими свойствами. Они нивелируют влияние микро- и макрогеометрических отклонений и позволяют получить результат, не принимая во внимание причину возникновения погрешности и не разграничивая эти причины. Анализом этих причин должен заниматься изготовитель станков, чтобы обеспечить их геометрическую точность.
Однако в отдельных случаях геометрические определения (например, определения биений: радиальное биение, периодическое осевое биение) сохранены в настоящем стандарте для того, чтобы исключить возможную путаницу, а также для упрощения используемой терминологии. Таким образом, при описании методов испытаний, средств измерения и допусков метрологические определения приняты в качестве основных.
2.2 Методы измерения и принципы применения средств измерения
При испытании станка иногда бывает достаточно убедиться, не превышают ли фактические отклонения допустимые значения (например, при применении предельных калибров). Зачастую для определения фактических отклонений от допустимых следует проводить измерения, связанные со значительными затратами времени.
Кроме того, при проведении измерений следует учитывать погрешности, вызванные неточностью средств измерения или несовершенством применяемых методов измерения. Методы и средства измерения не должны привносить погрешности, превышающие определенную часть допустимого отклонения измеряемой величины. Так как точность применяемых средств измерения в различных лабораториях может быть разной, необходимо, чтобы каждое средство измерения имело градуировочную характеристику.
Очень важно, чтобы контролируемый станок и средства измерения были защищены от внешних воздействий: сквозняков, потоков светового или теплового излучений (лучи солнца, близко расположенные источники света, тепла и т.п.). До начала измерений должна быть обеспечена стабильная температура помещения, применяемых средств измерения, контролируемого станка.
Более подробные указания см. в приложении А.
2.3 Допуски
2.31 Допуски на размеры при испытании станков
Существуют также допуски на образцы изделий, обрабатываемых на станке при испытаниях (в дальнейшем «образец-изделие»).
2.311 Единицы и диапазоны измерения
При установлении допусков необходимо указать следующее:
a) используемую единицу измерения;
b) базу отсчета, величину поля допуска и его расположение относительно базы отсчета;
c) диапазон, в котором производится измерение.
Допуск и диапазон измерения следует выражать в одних и тех же единицах измерения. Числовые значения допусков, особенно допусков на размеры, следует указывать только в том случае, если их невозможно задать путем простой ссылки на существующие стандарты, распространяющиеся на соответствующие элементы станка. Допуски на углы и диапазоны измерения углов следует выражать либо в угловых единицах (градус, минута, секунда), либо отношением катетов прямоугольного треугольника (миллиметры на миллиметры).
Если для данного диапазона допуск известен, то допуск для другого диапазона, мало отличающегося от первого, определяют по закону пропорциональности. При диапазонах, существенно отличающихся от данного, закон пропорциональности неприменим. Для диапазонов меньших размеров допуски должны быть расширены, для диапазонов больших размеров они должны быть сужены по сравнению с допусками, определенными на основе закона пропорциональности.
2.312 Учет погрешности измерения при определении допустимых отклонений
Погрешности измерения включают в себя погрешности средств измерения и применяемых методов контроля. Погрешности измерения следует учитывать при анализе результатов измерения и определении соответствия результатов измерения допустимым значениям (см. 2.2). Чтобы измеренная величина соответствовала допуску, она должна быть меньше допустимой на величину погрешности измерения.
Допуск на биение: x мм
Неточность приборов, погрешности измерения: y мм
Величина показания прибора, соответствующая допуску на биение x мм, должна быть (x-y) мм.
Следует также учитывать погрешности, возникающие при сравнительных измерениях: неточности формы деталей станков, используемых в качестве базы отсчета, а также поверхностей, перекрываемых измерительными наконечниками или опорными поверхностями измерительных приборов.
Из-за вышеупомянутых источников погрешностей в качестве действительного отклонения следует принимать среднеарифметическое значение нескольких измерений.
Линии или поверхности, выбранные в качестве базы при измерении, должны быть непосредственно связаны со станком (например, линия центров токарного станка, ось шпинделя сверлильного или расточного станка, направляющие станка и т.п.).
Расположение поля допуска по отношению к номинальному значению следует определять в соответствии с 2.324.
2.32 Классификация допусков
2.321 Допуски, относящиеся к образцам-изделиям и к отдельным элементам станков
Изготовитель станков должен соблюдать правила обозначения допусков на чертежах в соответствии с ИСО 1101.
2.321.1 Допуски размеров
Допуски размеров, указанные в настоящем стандарте, относятся исключительно к размерам образцов изделий, используемых для испытания станков, а также к присоединительным размерам для установки режущих инструментов и средств измерения, монтируемых на станке (конус шпинделя, отверстия револьверных головок).
Допуски устанавливают пределы допустимых отклонений относительно номинальных размеров. Они выражаются в линейных единицах (например, отклонения положения опорных поверхностей и диаметров отверстий для установки и центрирования инструментов).
2.321.2 Допуски формы
Допуски формы ограничивают допустимые отклонения от теоретической геометрической формы (например, отклонения, относящиеся к плоскостности, прямолинейности, биению цилиндрической поверхности, профилю резьбы или зубьев).
Они выражаются в линейных или угловых единицах. В зависимости от размеров поверхности измерительного наконечника или опорной поверхности измерительного прибора может быть определена только часть погрешности формы. Поэтому, в случае повышенных требований к точности, должна быть регламентирована величина поверхности, перекрываемой измерительным наконечником или опорой измерительного прибора.
Поверхность и форма наконечника должны соответствовать точности измерения и размерам контролируемой поверхности (поверочную плиту и стол крупного продольно-строгального станка нельзя измерять, используя наконечники с одинаковой поверхностью контакта).
2.321.3 Допуски расположения
Допуски расположения ограничивают допустимые отклонения, относящиеся к расположению элемента относительно прямой, плоскости или другого элемента станка (например, отклонение от параллельности, перпендикулярности, соосности и т.д.). Они выражаются в единицах измерения длин или углов.
Если допуск расположения задан в двух различных плоскостях и при этом отклонения в этих двух плоскостях по-разному влияют на точность работы станка, допуск расположения следует устанавливать для каждой плоскости отдельно.
2.321.4 Влияние погрешностей формы при определении погрешностей расположения
При измерении погрешностей взаимного расположения двух поверхностей или двух линий (см. рисунок 1, линии и ) измерительный прибор автоматически включает некоторые погрешности формы и дает показания с их учетом. Следует исходить из принципа, что контроль должен охватывать общую погрешность, с учетом погрешностей формы двух поверхностей или двух линий. Следовательно, общий допуск должен учитывать и допуски на форму контролируемых поверхностей. (В случае необходимости, до начала измерений следует предварительно определить погрешности формы линий и поверхностей, относительно расположения которых будет производиться измерение).
Большая Энциклопедия Нефти и Газа
Геометрическая точность станка определяется путем испытания в ненагруженном состоянии при неподвижном положении его частей или при медленном ( от руки) их переаетценш. Проверка осуществляется с помощью индикаторов, точных линеек и других измерительных приборов. [2]
Геометрическая точность станка определяется точностью взаимного положения или деремещения частей станка в ненагруженном состоянии. [3]
Геометрическая точность станка является одним из факторов, определяющих точность обработки деталей. Контролю подлежит соосность и параллельность шпинделя; правильность взаимного положения суппортов, столов относительно шпинделя и др. Допустимые значения отклонений зависят от класса точности станка. [4]
Геометрическую точность станка проверяют после точной установки его на стенде в ремонтном цехе или на фундаменте в производственном цехе и после испытания станка на холостом ходу и в работе. [7]
Проверка геометрической точности станка выполняется после точной установки его на стенде в ремонтном цехе или на фундаменте в производственном цехе и после испытания станка на холостом ходу и в работе. [9]
Определение геометрической точности станка не исключает всех его проверок на точность по стандарту. [10]
Проверка геометрической точности станка дает лишь косвенную гарантию точности обработки на станке, поэтому ГОСТами предусмотрена также проверка станка в работе, позволяющая получить непосредственно точность обработанной детали ( точность размера и формы) и чистоту поверхности при обработке образцов заданного размера. [11]
Поп геометрической точностью станка подразумевается степень приближения действительных размеров, форм и взаиморасположения деталей станка к абсолютно точным значениям их. [12]
Для проверки на геометрическую точность станка ГОСТом установлены параметры и методы проверки их. Проверка станков по нормам точности заключается в установлении точности изготовления, взаиморасположения, перемещения и соотношения движений рабочих органов станка, несущих заготовку и инструмент, путем измерений с помощью приспособлений и приборов, а также путем промеров обработанных на станках образцов деталей. [13]
Для этого при проверке геометрической точности станка погрешности следует разделять на скалярные и векторные. В последнем случае по стандарту проверка осуществляется с помощью одного индикатора. Этот пример иллюстрирует отличие применяемых проверок от стандартных. Для оценки влияния точности основных узлов станка на выходные параметры необходимо составление расчетных схем. Следует иметь в виду, что на один и тот же выходной параметр типовой детали может влиять несколько видов исходных погрешностей. [14]
Все перечисленные и прочие параметры геометрической точности станка должны быть приведены в соответствие с существующими нормами. [15]
Точность станка. Испытания и проверка металлорежущих станков на точность
Общие замечания
Испытание станков на точность является одним из основных разделов программы испытаний при приемке серийных станков и опытных образцов новых моделей.
Измерения геометрической точности станков относятся к области метрологических работ.
Под геометрической точностью станка, характеризующей качество его изготовления и установки, понимается:
В процессе обработки изделий возникают усилия, вызывающие деформацию узлов станка, обрабатываемой заготовки и инструмента, а также выделяется тепло, вызывающее тепловые деформации их.
Геометрическая точность станка является важной его характеристикой, но не может в полном объеме характеризовать точность обрабатываемых на станке изделий.
Геометрическая точность станка определяется рядом проверок с помощью измерительных инструментов и приборов. Измерение обработанных на чистовых режимах образцов является косвенной оценкой этой точности и дополняет указанные проверки.
Установка станков перед испытанием на точность
Перед испытанием на точность станок устанавливается на испытательном стенде или на фундаменте на опоры, предусмотренные конструкцией станка. Это должно быть проделано очень тщательно, так как геометрическая точность станка в ряде случаев зависит от точности его установки. Существуют следующие виды установки станков при испытании:
1. Установка станка на три точки опоры обычно применяется для прецизионных станков небольших размеров с жесткой станиной, работающей без дополнительного повышения ее жесткости фундаментом.
Установка станка в горизонтальное положение производится регулировкой опор. Выверка производится уровнями, устанавливаемыми в продольном и поперечном направлениях.
При установке станка все его перемещающиеся части (столы, каретки, суппорты, бабки и др.) должны занимать средние положения.
Следует учитывать возможность изменения положения станка на опорах во время испытания; для исключения ошибок необходимо контролировать положение станины дополнительным уровнем.
2. Установка станка (при эксплуатации) на число опор более трех является наиболее распространенным способом. Станина станка при этом жестко связывается с фундаментом болтами, чем увеличивается ее жесткость.
При установке такого станка для испытания на стенде или фундаменте выверкой с помощью клиньев или башмаков станина станка, не обладающая достаточной жесткостью, деформируется под действием собственного веса и веса смонтированных на ней узлов.
Поэтому установка станка на многих опорах производится с помощью измерения уровнями деформаций станины в отдельных ее частях. Регулировкой опор станина устанавливается в положение, при котором ее деформации будут наименьшими. В процессе испытания станка на точность может иметь место дополнительная регулировка опор в пределах допустимых деформаций станины с проверкой взаимного расположения отдельных частей станка.
При испытании станков, станины которых обладают достаточной жесткостью и работают без закрепления их фундаментными болтами или на виброизолирующих опорах, не допускается в процессе испытания на точность дополнительная регулировка опор.
Установка станка перед испытанием должна быть произведена согласно установочному чертежу, но без затяжки фундаментных болтов.
Точность установки станка перед испытанием указана в каждом разделе приведенных ниже норм точности.
Определение основных отклонений
Основные понятия отклонений формы и расположения линейчатых поверхностей, применяемых в стандартах на нормы точности в соответствии с общими условиями испытания станков на точность по ГОСТ 8-53:
1. Непрямолинейность поверхности (в заданном направлении, рис. 124)
Определение
Наибольшее отклонение от прямой линии (AB) профиля сечения проверяемой поверхности, образованного перпендикулярной к ней плоскостью (I), проведенной в заданном направлении; прямая линия проводится через две выступающие точки (a, b) профиля сечения.
2. Неплоскостность поверхности (рис. 125)
Определение
Наибольшее отклонение проверяемой поверхности от плоскости, проведенной через три выступающие точки поверхности (а, Ь, с).
3. Непараллельность поверхностей (рис. 126)
Определение
Наибольшая разность расстояний между плоскостями, проходящими через три выступающие точки каждой из поверхностей (Н и H1), на заданной длине (L).
4. Неперпендикулярность поверхностей (рис. 127)
Определение
Наибольшее отклонение угла, образованного двумя поверхностями и измеренного в заданной точке линии их пересечения или в двух крайних и средней точке этой линии (углы a, γ. δ), от прямого угла.
5. Овальность (рис. 128)
Определение
Наибольшая разность между наибольшим и наименьшим диаметрами в двух крайних и среднем сечениях или в одном обусловленном сечении (D — d; D1—d1).
6. Конусность (рис. 129)
Определение
Отношение наибольшей разности диаметров двух поперечных сечений проверяемой поверхности (D — d) к расстоянию между этими сечениями (L).
7. Огранка (рис. 130)
Определение
Наибольшая разность между диаметром окружности, в которую вписан контур сечения проверяемой поверхности, и расстоянием между двумя параллельными плоскостями, касательными к этой поверхности.
8. Непрямолинейность образующей (рис. 131)
Определение
Наибольшее отклонение профиля осевого сечения проверяемой поверхности от прямой линии (АВ; CD), проведенной через две выступающие точки профиля.
9. Радиальное биение (рис. 132)
Определение
Наибольшая разность расстояний (а) от проверяемой поверхности до оси ее вращения.
10. Торцовое биение (рис. 133)
Определение
Наибольшая разность измеренных параллельно оси проверяемой торцовой поверхности расстояний до плоскости, перпендикулярной к оси вращения (l2—l1) на заданном диаметре.
11. Осевое биение (рис. 134)
Определение
Наибольшее перемещение (x) проверяемой детали вдоль оси ее вращения в течение полного ее оборота вокруг этой оси.
12. Несовпадение осей (рис. 135)
Определение
Наибольшее расстояние (с) между центрами поперечных сечений проверяемых поверхностей в пределах заданной длины (l)•
Примечание. В ГОСТ 10356—63 приведены определения отклонений формы и расположения поверхностей, несколько отличающиеся от приведенных выше определений, принятых по действующему ГОСТ 8—53.
Измерение прямолинейности и плоскостности направляющих поверхностей станков
Прямолинейное движение в металлорежущих станках наряду с круговыми представляет главный и наиболее распространенный вид движения и перестановки подвижных частей станка относительно его базовых деталей (станины, стоек, траверс и т д.) и осуществляется с помощью направляющих поверхностей.
Прямолинейность движения определяет точность формы и взаимное расположение обрабатываемых на станке поверхностей, точность координатных и расчетных перемещений, точность установки переставляемых деталей, узлов и механизмов, взаимодействие механизмов, соединяющих подвижные и неподвижные части станка.
В свою очередь, точность прямолинейного движения определяется точностью изготовления и монтажа направляющих поверхностей базовой детали, т. е. степенью приближения их по форме и взаимному расположению к заданным геометрическим формам.
Измерение прямолинейности системы направляющих включает:
Реальные направляющие поверхности не представляют геометрически правильных плоскостей из-за погрешностей, вносимых в процесс их формообразования совокупностью технологических и других факторов, и только в большей или меньшей степени приближаются по своей форме к плоскостям.
Измерение прямолинейности направляющей поверхности имеет целью установление ее действительной формы с помощью координат, выраженных в линейных величинах и определяющих отклонения направляющей поверхности от исходной геометрической плоскости или следа пересечения поверхностей от геометрической прямой.
Методы и средства измерения прямолинейности основываются на двух видах измерений:
За исходную прямую линию принимаются: линия горизонта, прямолинейный луч света, проекция горизонтально натянутой струны на горизонтальную плоскость, материализованный эталон прямой — линейки и т. д.
Сущность методов измерения линейных величин (оптическим методом визирования, измерением по струне, гидростатическими методами) заключается в том, что координаты элементарных площадок поверхности направляющей определяются непосредственным измерением. Изменение определяет координату элементарной площадки относительно исходной прямой.
Измерение каждой данной площадки не зависит от измерения координат других площадок, за исключением крайних, по которым устанавливаются относительно друг друга измеряемый объект и исходная прямая.
Сущность методов измерения угловых величин (уровнем, коллимационным и автоколлимационным методами) заключается в том, что положение элементарных площадок не измеряется относительно исходной прямой, а определяется взаимное расположение двух соседних площадок последовательно по всей длине направляющей.
Кроме проверки прямолинейности отдельной направляющей, возникает необходимость проверки идентичности формы двух направляющих, которая осуществляется с помощью уровня.
Сущность метода проверки идентичности формы направляющих (извернутости или винтообразности направляющих) заключается в определении посредством уровня углов поворота мостика, установленного в поперечном направлении на две направляющие и перемещаемого вдоль этих направляющих.
Так как допуски на извернутость направляющих назначаются в угловых величинах (часто в делениях шкалы уровня), то результаты измерения непосредственно отражают идентичность формы направляющих. Извернутость определяется наибольшей разностью показаний уровня.
Измерение точности кинематических цепей металлорежущих станков
При проверке точности винторезных цепей токарно-винторезных, резьбофрезерных и резьбошлифовальных станков необходимо измерение точности всей винторезной цепи, включая передаточные зубчатые колеса и механизм ходового винта. Отдельные погрешности, определяющие точность этой цепи: осевое биение шпинделя, прямолинейность направляющих, осевое биение ходового винта и т. д. регламентируются рядом самостоятельных проверок.
Измерение точности винторезной цепи производится с помощью эталонного винта, устанавливаемого в центрах испытываемого станка, и измерительного прибора (отсчетного или самопишущего), устанавливаемого на месте режущего инструмента.
Измерение осуществляется на ходу путем непосредственного контакта измерительного стержня прибора витка эталонного винта при настройке станка на шаг этого винта. Таким образом, проверка производится в условиях аналогичных нарезанию резьбы.
При проверке точности кинематических цепей зуборезных станков применяется теодолит с коллиматором или специализированная аппаратура.
Измерение точности абсолютных перемещений по шкалам производится, главным образом, на прецизионных координатно-расточных станках, координатные системы которых перемещаются на заданные размеры с помощью штриховых мер (шкал и масштабных устройств) или по ходовым винтам, снабженным коррекционными устройствами.
Проверка точности абсолютных перемещений производится по образцовым штриховым мерам с помощью отсчетного микроскопа.
Испытания точности координатно-расточных станков должны производиться высококвалифицированным персоналом в особых температурных условиях по аттестованным образцовым штриховым мерам.
Замеренная точность координатных перемещений будет зависеть от места установки образцовой меры в рабочем пространстве станка. При этом следует выбирать наиболее часто встречающиеся зоны обработки в рабочем пространстве.
Необходимо также учитывать отклонения образцовой штриховой меры по ее аттестату с тем, чтобы определить действительные величины координатных перемещений.
Средства измерения точности металлорежущих станков
Приборы и инструмент общего назначения, применяемые для большинства испытаний точности станков (контрольные линейки и угольники, уровни, щупы, концевые меры, контрольные оправки, индикаторы и микрокаторы и т. д.), достаточно просты и не требуют специальных указаний по их применению.
Все средства измерения, применяемые для проверки точности станков, должны быть соответствующим образом проверены и аттестованы, а их погрешности учтены при проведении измерений.
Необходимо иметь в виду, что в ряде случаев погрешности измерительных приборов и инструмента могут быть автоматически исключены из результатов измерений путем известных в измерительной технике приемов, например: перестановки контрольных оправок с поворотом их на 180°, «раскантовки» уровня при проверке горизонтальности, «раскантовки» угольника при проверке перпендикулярности, измерения прямолинейности двумя гранями проверочной линейки с учетом их непараллельности и др.
Такие приемы измерения обеспечивают высокую точность проверок и должны применяться во всех случаях, где это представляется возможным.
Относительно небольшое количество ответственных проверок, характеризующих точность станка, требует применения специальных измерительных приборов.
Применение этих приборов предполагает наличие квалифицированного персонала, владеющего навыками работы с такими приборами.
К числу специальных измерительных приборов относятся:
При проведении измерений специальными приборами и при обработке результатов измерения необходимо руководствоваться инструкциями и наставлениями к этим приборам.
Методы проверки и средства измерения, указанные в стандартах на нормы точности станков являются обязательными; применение других методов и средств измерения допускается при условии, что они полностью обеспечивают определение требуемой стандартами точности станков. При проверке станков на точность (без резания) движения узлов станка производятся от руки, а при отсутствии ручного привода — механически на наименьшей скорости.
Если конструктивные особенности станка не позволяют произвести измерение на длине, к которой отнесен допуск, последний пересчитывается на наибольшую длину, на которой может быть произведено измерение. Для длин, значительно отличающихся от той длины, для которой указан допуск, правило пропорциональности допусков неприменимо.
Классификация металлорежущих станков по точности
По разработанной в СССР классификации станков по точности они подразделяются на пять классов, приведенных в табл. 171.
Класс точности станка | Обозначение класса точности | Соотношение основных допусков точности станков |
Нормальной точности станки | Н | 1 |
Повышенной точности станки | П | 0,6 |
Высокой точности станки | В | 0,4 |
Особо высокой точности станки | А | 0,25 |
Сверхточные станки | С | 0,15 |
Как видно из табл. 171 соотношение между величинами допусков при переходе от класса к классу для большинства показателей точности принято равным φ = 1,6.
Это соотношение позволяет согласовать требования к точности станка с требованиями к точности обрабатываемых на нем изделий, так как коэффициент 1,6 учитывается в системах допусков параметров, характеризующих точность поверхностей изделий широкого применения. Станки повышенной точности, как правило, изготавливаются на базе станков нормальной точности, отличаясь от них, в основном, более точным изготовлением и подбором отдельных деталей и повышенным качеством монтажа.
Станки высокой и особо высокой точности отличаются от предыдущих специальными конструктивными особенностями отдельных элементов, высокой точностью их изготовления и специальными условиями эксплуатации.
Сверхточные станки предназначены для обработки деталей наивысшей точности — делительных зубчатых колес и дисков, эталонных зубчатых колес, измерительных винтов и т. п.
При приемке станков более высокого класса точности, чем регламентируется приведенными ниже нормами, можно использовать принятое соотношение основных показателей точности при переходе от более низкого к более высокому классу путем умножения допускаемых отклонений на 0,6.
Сравнение норм точности ГОСТ и иностранных стандартов
Сравнивая стандарты СССР (ГОСТ) на нормы точности металлорежущих станков с аналогичными стандартами других стран, следует отметить: