что такое двухфазный и трехфазный ток
Виды подключений
Типы подключений нагревателей к источнику питания.
В настоящее время типы подключений различаются по количеству фаз: одна, две или три. Отсюда и названия типов подключений:
однофазное;
двухфазное;
трехфазное.
Однофазное подключение предусматривает самый простой способ подключить нагреватель к источнику питания: на один из двух проводов, идущих от сердечника нагревателя, подается фаза, на другой провод – нейтраль или, как принято говорить, «ноль» (рис. 1).
Рисунок 1. Однофазное подключение.
Однофазный тип подключения широко применяется в типичной электросети, где напряжение составляет 220 – 240 Вольт, и в других сетях, которые имеют такие значения напряжения: 12, 24, 36, 48, 60 и 110 Вольт.
На рисунке 2 показана схема подключения к однофазному источнику питания.
Рисунок 2. Схема однофазного подключения.
В силу того, что нагреватель не предполагает наличие собственной полярности, фаза может подаваться на любой из проводов. Данный факт относится к преимуществам использования такого типа подключения: простота и универсальность.
Рисунок 3. Двухфазное подключение.
Двухфазное подключение используется в энергосетях, напряжение которых варьируется в пределах 380 – 400 Вольт.
На рисунке 4 показана схема подключения к двухфазному источнику питания. Как было сказано раннее, визуальных и конструктивных изменений, по сравнению с однофазным типом, данный тип подключения не имеет.
Рисунок 4. Схема двухфазного подключения.
Преимуществом такого типа подключения является возможность получить больше мощности от нагревательного элемента. Повышение мощности оказывает негативное влияние на надежность и ресурс нагревателя – это является единственным недостатком использования двухфазного подключения
Трехфазное подключение может быть реализовано двумя способами. На рисунке 5 показаны две схемы исполнения трехфазного подключения: звезда и треугольник.
Рисунок 5. Схемы исполнения трехфазного подключения.
Разница между этими схемами заключается только лишь в отличительном напряжении питания, которое будет подаваться нагревателю: либо фазные 220 вольт, либо линейные 380 вольт к источнику питания. Фазы будут иметь одинаковый ток, какой бы не была выбрана схема.
Трехфазное подключение по схеме звезда показано на рисунке 6.
Рисунок 6. Трехфазное подключение по схеме звезда.
Подключение по схеме звезда предусматривает наличие нулевого провода, который для визуальной разницы имеет синий цвет. Существует возможность не использовать нулевой провод, если его наличие в схеме не было предусмотрено клиентом. Однако, мы настоятельно не рекомендуем использовать подключение по схеме звезда без использования нулевого контакта.
На рисунке 7 представлен принцип подключения по схеме звезда.
Рисунок 7. Принцип подключения по схеме звезда.
Если нагреватель имеет вместо проводов для подключения контакты, то производитель отмечает нулевые контакты синим цветом так, как это показано на рисунке 8, 9.
Рисунок 8. Подключение по схеме звезда без проводов в нагревателе.
Рисунок 9. Подключение сухого ТЭНа по схеме звезда.
Трехфазное подключение по схеме треугольник показано на рисунке 10.
Рисунок 10. Трехфазное подключение по схеме треугольник.
Подключение по схеме треугольник используется при работе с линейным напряжением порядка 380 вольт. Поэтому каждый участок цепи нагревателя получает две фазы, чем отличается от подключения по схеме звезда, где на каждый участок цепи приходится лишь одна фаза.
Треугольное подключение, которое принято считать классическим, имеет 3 провода, на которые подается три фазы. Наличие нулевого провода данная схема подключения не предусматривает. На рисунке 11 и 12 показаны принципы подключения нагревателя и сухого ТЭНа по схеме треугольник.
Рисунок 11. Принцип подключения по схеме треугольник.
Рисунок 12. Подключение сухого ТЭНа по схеме треугольник.
Преимуществом такой схемы подключения является более высокие значения мощности, по сравнению со схемой звезда, а также более удобное подключение без использования лишних проводов. Недостатком такой схемы является лишь недостаток использования высокого напряжения, которое снижет ресурс нагревателя.
Заземление предназначено для предотвращения несчастных случаев на производстве, а зануление предназначено для выравнивания потенциалов в цепи – не стоит данные понятия считать синонимами.
Оборудование должно быть изначально заземлено, что требует техника безопасности, тем ниже риск несчастного случая (рис. 13). Исключениями являются нагреватели без металлического корпуса, которые не нуждаются в заземлении.
Рисунок 13. Влияние заземления на безопасность человека.
Дом из соломы
В чем разница между фазами электрического тока (фазы 1, 2, 3 )?
Однофазные сети | Двухфазные сети | Трёхфазные сети |
Прохождение тока возможно при замкнутой цепи. Поэтому ток нужно сначала подвести к нагрузке, а затем вернуть назад. При переменном токе провод, подводящий ток — это фаза. Её схемное обозначение L1 (А). Второй называют нулевым. Обозначение — N. Значит, для передачи однофазного тока нужно использовать два провода. Называются они фазным и нулевым соответственно. Между этими проводами напряжение 220 В. | Идёт передача двух переменных токов. Напряжение этих токов сдвинуто по фазе на 90 градусов. Передают токи двумя проводами: двумя фазными и двумя нулевыми. Это дорого. Поэтому теперь на электростанциях его не генерируют и по линиям электропередач (ЛЭП) не передают. | Передаётся три переменных тока. По фазе их напряжения сдвигаются на 120 градусов. Казалось бы, для передачи тока нужно было задействовать шесть проводов, но, используя соединение источников по схеме «звезда», обходятся тремя (вид схемы похож на латинскую букву Y). Три провода являются фазными, один — нулевой. Экономична. Ток без труда передаётся на далёкие расстояния. Любая пара фазных проводов имеет напряжение 380 В. Пара фазный провод и нуль — напряжение 220 В. |
Таким образом, электропитание наших домов и квартир может быть однофазным или трёхфазным.
Однофазное электропитание
Однофазноый ток подключают двумя методами: 2-проводным и 3-проводным.
Трёхфазное электропитание
Распределение трёхфазного питания по дому выполняется двумя способами: 4-проводным и 5-проводным.
В трёхфазной сети фазы должны нагружаться максимально равномерно. Иначе произойдёт перекос фаз. Результат этого явления весьма плачевен и непредсказуем для человеческой жизни и техники.
От того, какая электропроводка в доме зависит и то, какое электрооборудование можно в неё включать.
Например, заземление, а значит и розетки с заземляющим контактом обязательны, когда в сеть включаются:
А для электропитания двигателей (актуальных для частного дома) нужен трёхфазный ток.
Сколько стоит подключение однофазного и трехфазного электричества?
Затраты на расходные материалы и монтаж оборудования планируются также, исходя из наиболее предпочтительного подключения. И если предсказать стоимость розеток, выключателей, светильников трудно (всё зависит от причуд вашей и дизайнерской фантазии), то цены на монтажные работы приблизительно одинаковы. В среднем это:
Поделиться «В чем разница между фазами электрического тока (фазы 1, 2, 3 )?»
Что такое фаза тока?
Практически все новички и собственники домов часто сталкиваются с проблемой: что же такое фаза тока в обычной электрической проводке? Такие вопросы возникают чаще всего в процессе ремонта каких-то электроприборов.
При возникновении такой ситуации, в первую очередь, нужно думать и соблюдать технику безопасности. А знания и умения должны отойти на второй план. Глубокие познания об самых простых законах образования тока и различных процессов, которые происходят непосредственно в бытовых приборах. Эти знания не только могут помочь найти решение проблем множества неисправностей, которые возникают в электроприборах, но и решить их самым простым и надежным способом.
Практически все конструкторы и инженеры работают над тем, чтобы сократить количество несчастных случаев в процессе ремонтных работ с электросетью либо электроприборами. Основная цель потребителей – соблюдать четко прописанные нормы и стандарты.
Давайте детальнее поговорим о токе:
Однофазный ток.
Под однофазным током подразумевают – переменный ток, образующийся в процессе вращательных действий в области магнитного поля проводника либо целой совокупности проводников, которые объединяются общий поток.
Как вы уже знаете, однофазный ток передается с помощью двух проводов. Эти провода называют:
1.Один провод это, непосредственно, фаза;
2.Второй – ноль.
В этих проводах напряжение 220 В.
Однофазное электропитание можно охарактеризовать множеством способов. Ни для кого не секрет, что однофазный ток поступает к потребителю с помощью:
1.Двух проводов;
2.Трех проводов.
Первый вариант подачи однофазного тока – двухпроводной использует два провода, как это понятно уже исходя из названия. Один провод передает фазу, а второй предназначается для нулевого напряжения. На использовании такой системы ориентировались практически всегда при строительстве домостроений в СССР.
Использование второго предусматривает добавление еще одного провода. Он применяется для заземления. Основное предназначение такого провода – исключение варианта поражения людей электрическим током. Так же он нужен для отвода тока при утечке и исключение неполадок электроприборов.
Двухфазный ток.
Под понятием двухфазный электрический ток все понимают – слияние двух однофазных токов, которые имеют сдвиг по фазе друг к другу. Угол сдвига может быть Pi2 либо 90 °.
Рассмотреть образование двухфазного тока можно на примере. Необходимо взять две индуктивные катушки и разместить их в пространстве так, чтобы оси этих катушек были перпендикулярны друг у другу. Затем нужно подключить обе катушки к двухфазному току. В итоге мы будем иметь систему, в которой образовалось 2 обособленных магнитных поля. В результирующем магнитном поле вектор будет вращаться с одной и той же скоростью и под одинаковым углом. В результате такого вращения и образуется магнитное поле. Ротор с обмотками, которые произведены в форме короткозамкнутого «беличьего колеса» либо металлического цилиндра на валу, будут вращаться и тем самым приводить в движение различные частицы.
Передача двухфазного тока осуществляется при помощью двух проводов: двумя фазными и двумя нулевыми.
Трехфазный ток.
Под трехфазной системой электрических цепей – принято понимать систему, состоящую из трех цепей. В этих цепях имеются переменные, ЭДС с одинаковой частотой, которые одинаково сдвинуты по фазе и по отношению друг к другу на 1/3 периода(=2/3). Каждый отдельный кусочек такой цепи можно смело назвать его фазой. А совокупную систему принято считать трехфазным током. Трехфазный ток без особого труда можно передавать на достаточно большие расстояния. Паре фазных проводов свойственно напряжение 380В. Если в паре фаза и ноль – 220В.
Распределить трехфазный ток по домостроениям можно такими способами:
Четырехпроводное подключение – происходит с использованием трех фаз и одного нулевого провода. Такая система до распределительного щитка, после используют два стандартных провода – фазу и ноль, чтобы иметь напряжение 220В.
При пятипроводном подключении трехфазного тока к уже привычной схеме нужно добавить еще провод, который обеспечивает защиту и заземление. В трехфазной сети все фазы имеют одинаковую нагрузку, чтобы избежать перекоса фаз. От используемой в домостроении проводки зависит и возможность подключения к сети тех или иных электроприборов. Например, заземление просто необходимо если в сеть планируют включать достаточно мощные электроприборы, такие как холодильник, печь, обогреватель, компьютер, телевизор, джакузи, душевая кабинка. Трехфазный ток применяют как источник электропитания двигателей, которые пользуются большой популярностью у потребителей.
Как устроена бытовая проводка
Изначально электроэнергию получают на электростанциях. Потом с помощью промышленной электросети ее передают на трансформаторную подстанцию, а там уже и происходит преобразование напряжения в 380В. Обмотки понижающего трансформатора соединены по принципу «звезда»: все три контакта необходимо подключить к точке «0», а оставшиеся контакты к клеммам «A», «B» и «C».
Все контакты «0», которые были объединены необходимо подключить к заземленному проводу на подстанции. Именно на территории подстанции и происходит расщепление ноля на:
1.Рабочий ноль;
2.PE-проводник, который выполняет защитную функцию.
После выхода из понижающего трансформатора все нули и фазы тока поступают в распределительный щиток домостроения. В результате получается трехфазная система, которая распределяется по всем щиткам многоэтажки. К конечному потребителю попадает напряжение 220В, проводник РЕ выполняет именно эту защитную функцию.
Такой метод пользуется огромной популярностью при подключении к электросети многоэтажных домов. Пользуются им уже много десятилетий. Случаются случаи, когда в системе возникают неисправности. В основном, причиной этому служит низкое качество соединения в цепи либо порыв на линии.
Что происходит в нуле и фазе при обрыве провода.
Обрывы на линии достаточно часто возникают по вине мастеров – они забывают подключить фазу либо ноль. Такие поломки достаточно распространены. Так же довольно часто происходит процесс отгорания нуля на подъездном щитке например, из-за высокой нагрузки в системе.
Если происходит порыв на любом участке цепи, то прекращает функционировать вся цепь, т.к. она размыкается. В таких ситуациях совершенно не важно, какой провод поврежден – фаза или ноль.
То же самое случается и при порыве между распределительным щитом многоэтажки и щитком в подъезде. При таком порыве все потребители, которые были подключены к данному щитку, будут без электроэнергии.
Все ситуации, которые мы попытались описать выше, имеют место быть. Они могут показаться сложными, но не несут никакой опасности для человечества. Ведь обрыв произошел только одного провода, поэтому это совершенно не опасно.
Очень тревожная ситуация – когда пропадает контакт между контуром заземления на подстанции и средним пунктом, к которому поступает все напряжение внутридомового щитка.
Именно в таком варианте электрический ток движется по контурам AB, BC, CA. Совокупное напряжение этих контуров 380В. Именно по этой причине и возникает достаточно опасная ситуация – один щиток может вообще не иметь напряжения, потому что хозяин отключит все электроприборы, а на другом образуется очень высокий уровень напряжения, около 380В. Это может способствовать выходу из строя многих приборов, потому что для них необходимо напряжение в 220В.
Естественно, появление данной ситуации можно избежать. Имеется масса недорогого/дорогостоящего оборудования, которое защитит вашу технику от скачков напряжения.
К такому оборудованию относится и стабилизатор напряжения. Различают такие виды стабилизаторов:
Как же определить фаза это или ноль?
Для определения ноль это либо фаза рекомендуют пользоваться специальным оборудованием – отверткой-тестером.
Функционирует этот прибор по принципу проведения тока с низким напряжением через тело человека, который его использует. Отвертка имеет такие составляющие:
1.Наконечник, с помощью которого есть возможность подключаться к фазе в розетке;
2.Резистор, который снижает разницу электротока до достижения им безопасного уровня;
3.Светодиод, который загорается, если это фаза;
4.Плоский контакт, который способствует возникновению сети с участием тела оператора.
Помимо отверток-тестеров имеются и иные варианты определения какой именно из контактов в розетке имеет поломку. С помощью такого оборудования электрики и определяют фазу и ноль в розетке. Кому-то привычнее использовать более точный тестер, который функционирует как вольтметр.
По показателям вольтметра можно сказать:
1.О наличии напряжения 220В между нулем и фазой;
2.О напряжении между нулем и землей либо его отсутствии;
3.О напряжении между нулем и фазой либо его отсутствии.
Чем отличается трехфазный ток от двухфазного
Ну как мог, объяснил. На пальцах. А по науке тут и так уже все расписали.
единственное что могу добавить, ноль – это весчь абстрактная, т.к. его не существует, есть 3 фазы и земля! ноль от земли отличается только тем что нулевой провод землится непосредственно на распределительной (трансформаторной) подстанции, а заземление, непосредственно, на объекте установки эл. оборудования! иногда разность потенциалов ноля относительно земли может достигать 15-20 вольт.
конечному потребителю поставляются так-же 3 фазы (в эл. щитах поездов их 3. ), но т.к. они ему нафиг ненужны, то в розетки подают всего одну, причем в каждую квартиру только одну, если на площадке 3 квартиры, то каждая питается от своей фазы! и нагрузка распределяется равномерно, иначе из-за длинны кабеля может возникнуть перекос фаз, к примеру если на одной нагрузка будет больше, то напруга на ней падает, но, при ентом она начинает возрастать на двух других, где нагрузка меньше, соответственно напряжение относительно земли повышается, что черевато выходом из строя аппаратуры. этим-же опасно и отгорание ноля в элеваторе (проподание токовой земли).
для понятия основ рекомендую почитать учебники для электриков (есть такие в библиотеках), т.к. на пальцах объяснить довольно сложно почему и как достигается сдвиг фаз, почему ток переменный, и почему частота 50 герц. тут надо рисовать картинки, а енто делать некогда. да и на компе не очень-то охото – больно муторно, проще от руки, но сканить негде. да и в 2х словах не объяснишь.
В домовых распределительных электрических сетях в основном используются одна фаза и нулевой проводник. Этого достаточно для работы бытовых электроприборов, освещения и отопления. Для организации производственного технологического процесса применяют трехфазный ток. Потребители, шинные сборки, распределительные щитки, узлы учёта и вся электрическая схема настроены на работу от сетей трёхфазного тока.
Трехфазная система переменного тока
Сети трёхфазной системы рассчитаны на питание от подстанций, подающих напряжение по четырём проводам: три фазы и ноль. Это один из частных случаев многофазных цепей, где функционируют ЭДС, имеющие синусоидальные формы и равную частоту. Они произведены одним и тем же источником, но имеют угол сдвига между фаз в 120 градусов (2π/3).
Ещё электротехник М.О. Доливо-Добровольский, проводя изучение работы асинхронных двигателей, представил четырёхпроводную систему в качестве рабочей для питания такого типа машин и агрегатов. Каждый провод, образующий отдельную цепь внутри этой системы, называют «фазой». Структуру трёх смещённых по фазе переменных токов именуют трёхфазным током.
Важно! В подобной структуре фазное напряжение равно 220 В – это то, что покажет прибор при измерении между фазным и нулевым проводниками. Величина линейного напряжения составит 380 В при проведении измерения между двумя фазными тоководами.
Что такое трехфазный ток
Это система, объединяющая три электроцепи с токами, которые разнятся по фазе на 1/3 периода. Причём их собственные ЭДС совпадают по частоте и амплитуде и имеют такой же фазовый сдвиг. У такой структуры фазное и линейное напряжения соответственно равны 220 В и 380 В. Частота периодических колебаний – 50 герц (Гц).
Если подключить к осциллографу токовые синусоидальные сигналы от трёхфазной сети, то можно будет увидеть, что они совершают прохождение своих точек максимума в регулярной фазовой последовательности.
Общая формула мощности переменного тока:
Значение cosϕ должно стремиться к единице. Средний коэффициент мощности лежит в интервале 0,7-0,8. Чем он выше, тем больше КПД установки.
В случае 3-х фазных сетей мощность будет зависеть от схемы соединения источника и нагрузки.
Почему используют трехфазный ток
Зная, что такое трехфазный ток, можно однозначно ответить на вопрос, почему он применяется.
Трехфазные системы переменного тока обладают целым рядом преимуществ, которые позволяют им выделяться среди многофазного построения электрических структур. К плюсам можно отнести следующие особенности:
К сведению. Подключение люминесцентных ламп к разным фазам и установка их в один светильник значительно уменьшат стробоскопический эффект и заметное глазу мерцание.
Неотъемлемой частью оборудования любого производственного предприятия являются асинхронные двигатели. Для их нормальной работы и развития паспортной мощности необходимо 3-х фазное питание. Оно обеспечивает возможность образования вращающегося МП (магнитного поля), которое приводит в движение ротор асинхронной машины. Такие двигатели экономичнее, проще в изготовлении и просты в эксплуатации, по сравнению с однофазными или любыми другими.
На электростанциях любого типа (ГЭС, АЭС, ТЭС), а также альтернативных обеспечено производство электроэнергии переменного типа при помощи генераторов.
Как осуществляется работа генератора
Устройство действует, превращая энергию вращения в энергию электричества. Электромашина, используя вращение МП, генерирует электрический ток. В тот момент, когда проволочная обмотка (катушка) крутится в МП, силовые линии магнитного поля пронизывают витки обмотки.
Внимание! В результате этого процесса электроны совершают перемещение в сторону плюсового полюса магнита. При этом ток движется, наоборот, в сторону отрицательного магнитного полюса.
Не важно, что вращается при механическом воздействии, обмотка или магнитное поле, – ток будет течь, пока вращение выполняется.
Генераторы, вырабатывающие трехфазное напряжение, могут иметь:
В устройствах первой конструкции возникает потребность отбора большого тока при высоком напряжении. Для этого приходится использовать щётки (скользящие по контактным кольцам контакты).
Второе строение генератора проще и более востребовано. Здесь ротор – подвижный элемент, состоит из магнитных полюсов. Статор – неподвижная часть, собрана из пакета изолированных между собой листов железа и вложенной в пазы обмотки статора.
Информация. У ротора тело собрано из сплошного железа и имеет магнитные полюса в виде наконечников. Наконечники набираются из отдельных листов. Их форма подобрана с учётом того, чтобы генерируемый ток по форме был близок к синусоиде.
Полюсные сердечники имеют катушки возбуждения. На катушки подаётся постоянный ток. Подача осуществляется через графитовые щётки на кольца контакта, находящиеся на валу.
На схемах 3-х фазный генератор рисуют в виде трёх обмоток, угол между которыми равен 1200.
Существует несколько способов возбуждения генераторов, а именно:
Сюда же относится магнитное возбуждение, подаваемое от магнитов постоянной природы.
Схемы трехфазных цепей
Обмотки генератора или трансформатора в трёхфазных цепях можно соединить между собой по двум схемам:
Соединения выполняются на клеммнике (борно) агрегата или трансформатора, куда выводятся концы обмоток.
Присоединение нагрузки к генератору (трансформатору) можно произвести по следующим схемам:
Внимание! Такое разнообразие схем вызвано тем, что собственные обмотки генератора и собственные обмотки нагрузки могут быть соединены по-разному. При различных типах сопряжения получаются разные соответствия между фазными и линейными значениями.
Соединение может быть выполнено на заводе при сборке генератора, к месту подсоединения питающего кабеля уже выведены вторые концы обмоток. Информация о схеме соединения обмоток наносится на прикреплённую к статору машины табличку.
На электрических двигателях, трансформаторах или иных потребителях также производят необходимые манипуляции по переключению выводов обмоток. На картинке, приведённой ниже, красным маркером отмечены концы обмоток, соединённые перемычкой. Синим маркером – фазы питания.
Соединение звездой
Буквенное обозначение начала обмоток – «А», «В», «С», концов – «X», «Y», «Z». Нулевая точка маркируется как «О». У каждой обмотки есть два конца. При соединении «звезда» все три одноименных вывода обмоток (начала) соединяются между собой в одну точку «О». К свободным концам подключается нагрузка.
Соединение треугольником
При выполнении этого присоединения на борно ставятся перемычки, включающие обмотки в следующей последовательности:
Графическое изображение катушек становится похожим на треугольник, отсюда пошло название.
Когда хотят использовать подключаемый асинхронный двигатель с максимальным коэффициентом полезного действия, то его обмотки соединяют в треугольник. В этом случае фазные напряжения совпадают (Uл = Uф), линейный ток будет вычисляться по формуле:
Подключая в качестве нагрузки двигатель, необходимо учесть ряд нюансов:
Из-за всего этого есть риск возникновения перегрева машины, что не происходит при соединении обмоток нагрузки по схеме «звезда». Там двигатель не расположен к перегреванию, и его пуск осуществляется плавно.
При двух видах включения обмоток различают и дают определение двум видам токов: линейному и фазному. Запомнить различия просто:
Стоит обратить внимание на формулы мощности при различных схемах соединения источника с нагрузкой.
Мощность тока при схеме «звезда» определяется по формуле:
P = 3*Uф*Iф*cosϕ = √3*Uл*Iл*cosϕ,
Мощность тока при схеме «треугольник» вычисляется по формуле:
P = 3* Uф* Iф*cosϕ = √3*Uл*Iл*cosϕ.
К сведению. Обращать внимание на линейный и фазный токи необходимо тогда, когда генератор (источник) нагружается несимметрично при подключении нагрузки.
Фазное и линейное напряжение в трехфазных цепях
Следующий параметр, который требует внимательного рассмотрения, – это напряжение. Так же, как и токи, напряжение в этом случае бывает фазное и линейное. Чтобы было понятнее их отличие, лучше всего рассмотреть графическое изображение векторов напряжений (фаз). Уже известно, что они расположены друг к другу под углом 1200. Таков угол между обмотками трёхфазного генератора.
Сохраняя угол наклона вектора Ub, откладывают его (изменив знак) от точки, где заканчивается вектор Ua. Тогда из полученной векторной диаграммы видно, что вектор линейного напряжения Uл равен расстоянию между точкой начала вектора напряжения Ua и точкой конца вектора напряжения Ub. Заметно, что вектор линейного напряжения превышает фазное. Насколько большая эта разница, можно определить, пользуясь формулой:
Так как sin600= √3/2, то формула принимает вид:
При практических измерениях параметров напряжения фазное напряжение измеряют, касаясь щупами тестера фазного и нулевого проводников. Линейное значение должно измеряться прикосновением щупами к двум фазным проводникам.
Подключение нагрузки к источнику в трёхфазной цепи может осуществляться, как по трём проводам, без нулевого проводника, так и с его использованием. Всё зависит от того, какого типа нейтраль у сети. В сетях с глухозаземлённой нейтралью нулевой проводник служит для избегания перекоса по фазам. К тому же его используют в цепях защиты от пробоя изоляции на корпус оборудования. Он даёт возможность для срабатывания защитного отключения или перегорания вставки предохранителя.
Отличия от однофазного тока
Как правило, в многоквартирные дома подводится трехфазный переменный ток. Это обусловлено подключением большого числа однофазных нагрузок. В этом случае есть возможность равномерно нагрузить каждую фазу цепи трансформаторной подстанции. Это позволит не допустить перекоса межфазного и фазного напряжений.
Основные различия, по сравнению с однофазным током, лежат в следующей плоскости:
В связи с этим использование трёхфазного тока более эффективно на производстве.
Важно! Стоимость оборудования, кабельной продукции, электроэнергии, приборов учёта при подведении к объекту напряжения, равного 380 В, значительно выше, чем однофазной сети.
Какой вариант тока выбрать, трёхфазный или однофазный, решать владельцу жилья. Особенно это касается больших частных домов, где современное электрооборудование требует наличия всех трёх фаз. Затраты на подведение 3-х фазного тока и установку узла учёта с лихвой окупятся возможностями использования трёхфазных потребителей в приусадебном хозяйстве.
Видео
Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт
Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.
Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.
Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).
Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.
Чем три фазы отличаются от одной?
В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.
Напряжения в трёхфазной системе
Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.
Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.
Подробнее о перекосе фаз, и от чего он бывает – здесь.
А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.
Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)
Преимущества и недостатки
Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.
Однофазная сеть 220 В, плюсы
Однофазная сеть 220 В, минусы
Трехфазная сеть 380 В, плюсы
Трехфазная сеть 380 В, минусы
Когда 380, а когда 220?
Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.
Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…
Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.
Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.
Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.
Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.
Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.
Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.
Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.
Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.
Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).
А что там свежего в группе ВК СамЭлектрик.ру?
Подписывайся, и читай статью дальше:
И на вводе (перед счетчиком) стоят примерно такие “ящички”:
Трехфазный ввод. Вводной автомат перед счетчиком.
Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.
Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?
Схемы Звезда и Треугольник в трехфазной сети
Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.
Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.
В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.
Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.
Система распределения электроэнергии
Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.
На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.
Трехфазное питание – ступени от генератора до потребителя
На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).
Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.
Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.
Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.
Напоследок – ещё несколько фото с комментариями.
Электрощит с трехфазным вводом, но все потребители – однофазные.
Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.