что такое дружественные числа
Дружественные числа
Дружественные числа?! Шутка исследователей? Что за странное название для математического термина? На самом деле, это название дано не с проста.
Дружественные числа — это два натуральных числа, для которых сумма всех делителей первого числа (кроме него самого) равна второму числу и, в свою очередь, сумма всех делителей второго числа (кроме него самого) равна первому числу. Всегда, когда говорят о дружественных числах, то имеют в виду пары числе. Таким образом, эти числа связаны отношениями сходства и поэтому были названы дружественными.
Впервые дружественные числа упоминаются в работах Пифагора, посвященных теории чисел. Следует отметить, что пифагорейцам была известна лишь одна пара дружественных чисел 220 и 284. Долгое время эта пара чисел была единственным представителем класса дружественных чисел.
В восемнадцатом веке Леонардо Эйлер нашёл ещё 65 пар дружественных чисел. К примеру одна из них, 17296 и 18416.
Однако, до сих пор общий способ нахождения пар дружественных чисел не был найден.
В 850 году нашей эры арабский астроном и математик Сабит ибн Курра предложил формулу, с помощью которой можно определить 3 пары дружественных чисел. Формула Сабит ибн Курра выглядит следующим образом:
, где n > 1 — натуральное число, а p,q,r — простые числа, то:
2 n pq и 2 n r — пара дружественных чисел.
Благодаря этой формуле были найдены пары дружественных чисел 220 и 284, 17296 и 18416 и 9363584 и 9437056 соответственно для n=2,4,7. Но для n больше никаких пар дружественных чисел нет.
Согласно официальным данным, на ноябрь 2006 известно 11 446 960 пар дружественых чисел, которые состоят из двух чётных или двух нечётных чисел. О том существует ли чётно-нечётная пара дружественных чисел науке до сих пор неизвестно. Кроме того, по-прежнему невыясненным остается предположение о существовании взаимно простых дружественных числа. В том случае, если такая пара дружественных чисел все же существует, то их произведение должно быть больше 1067.
Для наглядности приведем все пары дружественных чисел, значение которых меньше 100 000:
Дружественные числа
Дру́жественные чи́сла — два различных натуральных числа, для которых сумма всех собственных делителей первого числа равна второму числу и наоборот, сумма всех собственных делителей второго числа равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Большого значения для теории чисел эти пары не имеют, но являются любопытным элементом занимательной математики.
Содержание
История
Дружественные числа были открыты последователями Пифагора, которые, однако, знали только одну пару дружественных чисел — 220 и 284.
Формулу для нахождения некоторых пар дружественных чисел предложил примерно в 850 году арабский астроном и математик Сабит ибн Курра (826—901). Его формула позволила найти две новые пары дружественных чисел. Много столетий спустя Эйлер нашёл ещё 65 пар дружественных чисел. Одна из них — 17296 и 18416. Но общего способа нахождения таких пар нет до сих пор.
Неизвестно, конечно или бесконечно количество пар дружественных чисел. На сентябрь 2007 года известно 11994387 пар дружественных чисел. [1] Все они состоят из чисел одной чётности. Существует ли чётно-нечётная пара дружественных чисел, неизвестно. Также неизвестно, существуют ли взаимно простые дружественные числа, но если такая пара дружественных чисел существует, то их произведение должно быть больше .
Примеры
Ниже приведены все пары дружественных чисел, меньших 100 000.
Пары дружественных чисел образуют последовательность:
220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, … (последовательность A063990 в OEIS)
Способы построения
Формула Сабита
Если для натурального числа 1″ border=»0″ /> все три числа:
,
,
,
являются простыми, то числа и
образуют пару дружественных чисел. Эта формула даёт пары (220, 284), (17296, 18416) и (9363584, 9437056) соответственно для
, но больше никаких пар дружественных чисел для
не существует. Кроме того, многие дружественные числа, например (6232, 6368), не могут быть получены по этой формуле.
Метод Вальтера Боро
Если для пары дружественных чисел вида и
числа
и
являются простыми, причём
не делится на
, то при всех тех натуральных
, при которых оба числа
и
просты, числа
и
— дружественные.
См. также
Примечания
Ссылки
Полезное
Смотреть что такое «Дружественные числа» в других словарях:
ДРУЖЕСТВЕННЫЕ ЧИСЛА — два натуральных числа, каждое из которых равно сумме правильных делителей другого (т. е. делителей, меньших этого числа). Напр., 284 и 220 … Большой Энциклопедический словарь
ДРУЖЕСТВЕННЫЕ ЧИСЛА — ДРУЖЕСТВЕННЫЕ ЧИСЛА, два натуральных числа, каждое из которых равно сумме правильных делителей другого (т. е. делителей, меньших этого числа). Напр., 284 и 220 … Энциклопедический словарь
Дружественные числа — пара натуральных чисел, каждое из которых равно сумме всех собственных (или правильных) делителей другого, т. е. делителей, отличных от самого числа. Д. ч. 284 и 220, имеющие соответствующую сумму делителей 1+2+4+5+10+11+20+22+44+55+110 … Большая советская энциклопедия
ДРУЖЕСТВЕННЫЕ ЧИСЛА — пара натуральных чисел, каждое из к рых равно сумме собственных делителей другого, т. е. делителей, отличных от самого числа. Определение Д. ч. имеется уже в Началах Евклида, а также в трудах Платона. Древним грекам была известна одна пара Д. ч … Математическая энциклопедия
Числа Армстронга — Самовлюблённое число, или совершенный цифровой инвариант (англ. pluperfect digital invariant, PPDI) или число Армстронга натуральное число, которое в данной системе счисления равно сумме своих цифр, возведённых в степень, равную… … Википедия
Избыточные числа — Избыточное число положительное целое число n, сумма положительных собственных делителей (отличных от n) которого превышает n. Любое натуральное число относится к одному из трёх классов: избыточные числа, совершенные числа, недостаточные… … Википедия
Рецепт Вальтера Боро — Дружественные числа два натуральных числа, для которых сумма всех делителей первого числа (кроме него самого) равна второму числу и сумма всех делителей второго числа (кроме него самого) равна первому числу. Иногда частным случаем дружественных… … Википедия
МАТЕМАТИКИ ИСТОРИЯ — Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом… … Энциклопедия Кольера
Совершенное число — (др. греч. ἀριθμὸς τέλειος) натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого числа). По мере того как натуральные числа возрастают, совершенные числа встречаются… … Википедия
Число Армстронга — Самовлюблённое число, или совершенный цифровой инвариант (англ. pluperfect digital invariant, PPDI или число Армстронга натуральное число, которое в данной системе счисления равно сумме своих цифр, возведённых в степень, равную количеству его… … Википедия
Дружественные числа
Всего получено оценок: 138.
Всего получено оценок: 138.
Математика полна интересных загадок и не всегда понятных закономерностей. Математики древности считали, что можно всю вселенную изучить с помощью чисел, нужно только найти правильные закономерности, как показывает история – они оказались правы. Одной из интересных математических закономерностей являются дружественные числа, о которых и пойдет речь сегодня.
Что такое дружественное число?
Вспомним, что любое число имеет делители, то есть числа, на которые число поделиться нацело. Если у одного числа сумма всех делителей равна второму числу, а у второго числа сумма всех делителей равна первому, то такие числа называются дружественными.
Название закономерности пошло от Пифагора. Когда у древнего математика спросили, кто есть друг, он ответил, что для него друг – человек, повторяющий его самого. В качестве примера Пифагор привел два числа 220 и 284. А нашедшие закономерность ученики назвали числа дружественными друг другу.
Пример дружественных чисел
Рассмотрим наиболее простой пример дружественных чисел, приведенный еще Пифагором.
Делители числа 220: 1;2;4;5;10;11;20;22;44;55;110
Делители числа 284: 1;2;4;71;142
Если просуммируем все делители первого числа, то получится 1+2+4+5+10+11+20+22+44+55+110=284.
А теперь просуммируем делители числа 284: 1+2+4+71+142 = 220 – так и выглядит в математике эффект дружественных чисел.
Обратите внимание на то, что само число не считается делителем. Но при этом любое число можно поделить на само себя и получить в результате 1. А вот 1 считается делителем любого числа.
Сколько всего дружественных чисел?
Открывателем первой пары дружественных чисел был Пифагор. Эта пара наименьшая, ближе к началу числовой прямой таких чисел нет. После Пифагора ни один математик не мог открыть следующую пару чисел целых 15 веков, то есть полтора тысячелетия.
Третью пару нашел Ране Декарт в 1638 году, а через 100 лет Эйлер излагает 5 различных методов выявления дружественных чисел и преподносит их 59 пар!
С изобретением метода выявления дружественных чисел, пары стали находить все чаще и чаще. На 2019 год найдено больше 1 миллиарда дружественных чисел и пары продолжают находить. Интересно, что до сих пор математики не выяснили, является ли число дружественных пар конечным, или их бесконечно много.
Что мы узнали?
Мы поговорили о дружественных числах. Узнали, что это такое и поговорили об истории открытия математической зависимости. Сказали, сколько дружественных чисел открыто на данный момент.
Что такое дружественные числа
Дружественные числа — два различных натуральных числа, для которых сумма всех собственных делителей первого числа равна второму числу и наоборот, сумма всех собственных делителей второго числа равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Большого значения для теории чисел эти пары не имеют, но являются любопытным элементом занимательной математики.
Дружественные числа были открыты последователями Пифагора, которые, однако, знали только одну пару дружественных чисел — 220 и 284.
История
Формулу для нахождения некоторых пар дружественных чисел предложил примерно в 850 году арабский астроном и математик Сабит ибн Курра (826—901). Его формула позволила найти две новые пары дружественных чисел. Много столетий спустя Эйлер нашёл ещё 65 пар дружественных чисел. Одна из них — 17296 и 18416. Но общего способа нахождения таких пар нет до сих пор.
Неизвестно, конечно или бесконечно количество пар дружественных чисел. На сентябрь 2007 года известно 11994387 пар дружественных чисел. [1] Все они состоят из чисел одной чётности. Существует ли чётно-нечётная пара дружественных чисел, неизвестно. Также неизвестно, существуют ли взаимно простые дружественные числа, но если такая пара дружественных чисел существует, то их произведение должно быть больше .
Примеры
Ниже приведены все пары дружественных чисел, меньших 100 000.
1. 220 и 284 (Пифагор, около 500 до н. э.)
2. 1184 и 1210 (Паганини, 1860)
Пары дружественных чисел образуют последовательность:
220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, …
Способы построения
Формула Сабита
Если для натурального числа 1″ src=»http://upload.wikimedia.org/wikipedia/ru/math/e/b/3/eb380f3b2439960f7727e82712b46659.png» /> все три числа:
,
,
,
являются простыми, то числа и
образуют пару дружественных чисел. Эта формула даёт пары (220, 284), (17296, 18416) и (9363584, 9437056) соответственно для
, но больше никаких пар дружественных чисел для
не существует. Кроме того, многие дружественные числа, например (6232, 6368), не могут быть получены по этой формуле.
Метод Вальтера Боро
Если для пары дружественных чисел вида и
числа
и
являются простыми, причём
не делится на
, то при всех тех натуральных
, при которых оба числа
и
просты, числа
и
— дружественные.
Происхождение дружественных и совершенных чисел
Неизвестно, конечно или бесконечно количество пар дружественных чисел. В 2016 году известно более 1 000 000 000 пар дружественных чисел. Все они состоят из чисел одинаковой чётности.
Пифагор на вопрос, что такое друг, ответил: «это второе я, как числа 220 и 284»
Чтобы понять, является ли число совершенным, необходимо проделывать определенные расчеты. Другого пути нет. И такие числа встречаются редко. Например, пифагореец Ямблих писал об идеальных числах как о явлении, встречающемся от мириады до мириады мириад, и затем от мириады мириад до мириад мириад мириад и т. д. Однако в XIX веке были проведены проверочные расчеты, которые показали, что совершенные числа нам встречаются еще реже. Так, от 1020 до 1036 нет никакого совершенного числа, а если следовать Ямблиху, то их должно быть четыре.
Скорее всего, были именно трудность множества нахождения таких чисел послужила четвертое поводом к наделению выяснить их мистическими свойствами. Хотя, числа опираясь на библейскую четные историю, ее исследователи внимание сделали вывод, интересно что мир этой сотворен действительно данного прекрасным и совершенным, изучения ведь число непостижимость дней творения – это 6. А первое вот человек преданиях неидеален, так также как сотворен цели и живет в дне древнем седьмом. Однако совершенное его задача – это интересно стремиться к совершенству.
8 людей спаслось в Ноевом Ковчеге после всемирного потопа. Также в нем спаслись по семь пар чистых и нечистых животных. Если суммировать всех спасшихся в Ноевом Ковчеге, то выходит число 28, являющееся совершенным;
ФАКТ 4. руки человека – это совершенное орудие. Они имеют 10 пальцев, которые наделены 28 фалангами;
ФАКТ 5. луна совершает околоземные обороты каждые 28 дней;
ФАКТ 6. при начертании квадрата можно провести в нем диагонали. Тогда несложно будет заметить, что его вершины соединены 6 отрезками. Если то же проделать с кубом, то получится 12 ребер и 16 диагоналей. В сумме получится 28. Восьмиугольник тоже имеет причастность к совершенному числу 28 (20 диагоналей плюс 8 сторон). А семигранная пирамида имеет 7 ребер и 7 сторон основания с 14 диагоналями. В сумме это число 28;
ФАКТ 7. Лев Николаевич Толстой не раз шутливо «хвастался» тем, что дата его рождения 28 августа (по календарю того времени) является совершенным числом. Год рождения Л.Н. Толстого (1828) – тоже интересное число: последние две цифры 28 образуют совершенное число; если обменять местами первые цифры, то получится 8128 – четвертое совершенное число.