что такое дополнительная погрешность

дополнительная погрешность

3.26 дополнительная погрешность (variation): Различие между действительным значением и показанием или зарегистрированным значением серийного газоанализатора, когда один из влияющих факторов принимает любое значение в пределах назначенных условий эксплуатации.

Смотри также родственные термины:

Дополнительная погрешность газоанализатора

Погрешность, возникающая в результате воздействия влияющих факторов (климатических, механических, неизмеряемых компонентов газовой смеси и др.) на измеряемую величину при эксплуатации газоанализатора

3.11 дополнительная погрешность средства измерений: Составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.

148. Дополнительная погрешность электрического реле

E. Variation of the mean error

F. Variation de l’erreur moyenne

Алгебраическая разность между средней погрешностью электрического реле и его средней основной погрешностью

25 дополнительная погрешность электронного датчика [преобразователя физической величины]: Составляющая погрешности электронного датчика [преобразователя физической величины], возникающая вследствие отклонения какой-либо из влияющих физических величин от нормального значения или из-за выхода ее за пределы нормальной области значений.

Полезное

Смотреть что такое «дополнительная погрешность» в других словарях:

дополнительная погрешность — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN complementary error … Справочник технического переводчика

дополнительная погрешность виброизмерительного преобразователя по входу (выходу) — дополнительная погрешность Изменение погрешности виброизмерительного преобразователя по входу (выходу), вызванное отклонением одной из влияющих величин от ее нормального значения или выходом ее за пределы нормальной области значений. [ГОСТ 16819… … Справочник технического переводчика

дополнительная погрешность средства измерений — дополнительная погрешность Составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы… … Справочник технического переводчика

дополнительная погрешность газоанализатора — Погрешность, возникающая в результате воздействия влияющих факторов (климатических, механических, неизмеряемых компонентов газовой смеси и др.) на измеряемую величину при эксплуатации газоанализатора. [ГОСТ 17.2.6.02 85] [Защита атмосферного… … Справочник технического переводчика

Дополнительная погрешность газоанализатора — Погрешность, возникающая в результате воздействия влияющих факторов (климатических, механических, неизмеряемых компонентов газовой смеси и др.) на измеряемую величину при эксплуатации газоанализатора Источник … Словарь-справочник терминов нормативно-технической документации

дополнительная погрешность (средства измерений) — Составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности, вследствие отклонения какой либо из влияющих величин от нормального значения или выхода за пределы нормальной области значений (ОСТ 45.159 2000.1… … Справочник технического переводчика

дополнительная погрешность акселерометра по входу — Изменение погрешности акселерометра по входу, вызванное отклонением одной из влияющих величин от ее нормального значения или выходом ее за пределы нормальной области значений. [ГОСТ 18955 73] Тематики акселерометры EN complementary input error of … Справочник технического переводчика

дополнительная погрешность акселерометра по выходу — Изменение погрешности акселерометра по выходу, вызванное отклонением одной из влияющих величин от ее нормального значения или выходом ее за пределы нормальной области значений. [ГОСТ 18955 73] Тематики акселерометры EN coplementary output error… … Справочник технического переводчика

дополнительная погрешность измерения — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN complementary error of an actual measure … Справочник технического переводчика

дополнительная погрешность электрического реле — Алгебраическая разность между средней погрешностью электрического реле и его средней основной погрешностью [ГОСТ 16022 83] EN variation of the mean error the algebraic difference between a mean error and the reference mean error. The variations… … Справочник технического переводчика

Источник

Что такое дополнительная погрешность

Всероссийский научно-исследовательский институт
оптико-физических измерений

ПОИСК И НАВИГАЦИЯ

МЫ НА YOUTUBE

Погрешности средств измерений

Погрешность средства измерений (англ. error (of indication) of a measuring instrument) – разность между показанием средства измерений и истинным (действительным) значением измеряемой физической величины.

Систематическая погрешность средства измерений (англ. bias error of a measuring instrument) – составляющая погрешности средства измерений, принимаемая за постоянную или закономерную изменяющуюся.
Примечание. Систематическая погрешность данного средства измерений, как правило, будет отличаться от систематической погрешности другого экземпляра средства измерений этого же типа, вследствие чего для группы однотипных средств измерений систематическая погрешность может иногда рассматриваться как случайная погрешность.

Случайная погрешность средства измерений (англ. repeatability error of a measuring instrument) – составляющая погрешности средства измерений, изменяющаяся случайным образом.

Абсолютная погрешность средства измерений – погрешность средства измерений, выраженная в единицах измеряемой физической величины.

Относительная погрешность средства измерений – погрешность средства измерений, выраженная отношением абсолютной погрешности средства измерений к результату измерений или к действительному значению измеренной физической величины.

Приведенная погрешность средства измерений (англ. reducial error of a measuring instrument) – относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона.
Примечания:

Основная погрешность средства измерений (англ. intrinsic error of a measuring instrument) – погрешность средства измерений, применяемого в нормальных условиях.

Дополнительная погрешность средства измерений (англ. complementary error of a measuring instrument) – составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.

Статическая погрешность средства измерений – погрешность средства измерений, применяемого при измерении физической величины, принимаемой за неизменную.

Динамическая погрешность средства измерений – погрешность средства измерений, возникающая при измерении изменяющейся (в процессе измерений) физической величины.

Погрешность меры – разность между номинальным значением меры и действительным значением воспроизводимой ею величины.

Стабильность средства измерений (англ. stability) – качественная характеристика средства измерений, отражающая неизменность во времени его метрологических характеристик.
Примечание. В качестве количественной оценки стабильности служит нестабильность средства измерений.

Нестабильность средства измерений – изменение метрологических характеристик средства измерений за установленный интервал времени.
Примечания:

Точность средства измерений (англ. accuracy of a measuring instrument) – характеристика качества средства измерений, отражающая близость его погрешности к нулю.
Примечание. Считается, что чем меньше погрешность, тем точнее средство измерений.

Класс точности средств измерений (англ. accuracy class) – обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.
Примечания:

Предел допускаемой погрешности средства измерений – наибольшее значение погрешности средств измерений, устанавливаемое нормативным документом для данного типа средств измерений, при котором оно еще признается годным к применению.
Примечания:

Пример. Для 100-миллиметровой концевой меры длины 1-го класса точности пределы допускаемой погрешности +/- 50 мкм.

Нормируемые метрологические характеристики типа средства измерений – совокупность метрологических характеристик данного типа средств измерений, устанавливаемая нормативными документами на средства измерений.

Точностные характеристики средства измерений – совокупность метрологических характеристик средства измерений, влияющих на погрешность измерения.
Примечание. К точностным характеристикам относят погрешность средства измерений, нестабильность, порог чувствительности, дрейф нуля и др.

Источник

Основная и дополнительная погрешности

Основная инструментальная погрешность находится по классу точности СИ. Например, при нормальных условиях щитовым электромагнитным вольтметром класса точности 1,5 (т.е. имеющим предел основной приведенной погрешности γn не превышающий ±1,5 %) с диапазоном измеряемых значений 0. 300 В (нормирующее значение Хн = 300 В) получен результат измерения действующего значения напряжения U= 220 В. Требуется определить предельные значения абсолютной Δ и относительной δ инструментальных погрешностей результата измерения U.

Оценим предельное значение основной абсолютной погрешности Δ:

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность(2.5)

Предельное значение основной относительной погрешности δ:

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность(2.6)

Расчет суммарной погрешности результата измерения в общем случае предполагает нахождение максимально возможного числа составляющих (основной, дополнительной, методической, взаимодействия и т.д.).

Дополнительная погрешность возникает при работе СИ (в частности, прибора) не в нормальных, а в рабочих условиях, когда одна или несколько влияющих величин выходят за пределы области нормальных значений (но находятся внутри диапазона рабочих значений).

Влияющая величина (ВВ) — это такая физическая величина β, которая не измеряется в данном эксперименте, но влияет на результат измерения или преобразования. Например, в эксперименте по измерению тока в электрической цепи некоторые другие физические величины (температура окружающей среды, атмосферное давление, относительная влажность воздуха, электрические и магнитные поля, напряжение питания СИ) являются влияющими величинами. Однако, если мы измеряем температуру окружающей среды, то в данном эксперименте температура есть измеряемая величина.

Влияющие величины в общем случае могут меняться в довольно широких диапазонах. При оценке работоспособности СИ в различных условиях воздействия окружающей среды различают три области возможных значений ВВ:

• область нормальных значений ВВ когда значение ВВ находится в пределах заранее оговоренных (нормальных) значений;

• область рабочих значений ВВ когда значение ВВ находится в диапазоне своих рабочих значений;

• область значений ВВ, при которых возможны хранение или транспортировка СИ.

С точки зрения оценки инструментальных погрешностей нас интересуют лишь первые две области (рис. 2.5).

Область нормальных значений ВВ обычно задается симметричным относительно номинального значения β0 диапазоном β1….β0 В этом диапазоне возможных значений ВВ условия применения СИ считаются нормальными (НУ) и при этом имеет место только основная погрешность СИ.

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность

Рис. 2.5. Значения влияющей величины, условия применения и погрешности средств измерений

Областью рабочих значений называется более широкий диапазон возможных изменений ВВ, в котором СИ может нормально использоваться. Границы этого диапазона задаются нижним βн и верхним βв предельными значениями ВВ, соответственно. В этом диапазоне значений ВВ условия применения СИ называются рабочими (РУ) и при этом имеет место не только основная, но еще и дополнительная погрешность. Таким образом, при работе в пределах рабочих условий, но за пределами нормальных, общая инструментальная погрешность складывается уже из основной и дополнительной составляющих.

Например, для самой важной практически во всех измерительных экспериментах ВВ — температуры окружающей среды — область нормальных (для России) значений и, следовательно, нормальных условий применения СИ в большинстве обычных технических измерительных экспериментов составляет (20 ± 5) °С или (20 ± 2) °С.

Области нормальных значений не являются постоянными, а зависят от особенностей выполняемых измерений, измеряемых величин, классов точности СИ. Например, чем точнее СИ, тем уже требуемый диапазон нормальных температур. Для мер электрического сопротивления высшего класса точности (0,0005; 0,001; 0,002) допустимое отклонение температуры от номинального значения составляет, соответственно, ±0,1°С; ±0,2°С; ±0,5°С. Для зарубежных приборов часто за номинальное принимается значение температуры +23°С. Номинальные значения и диапазоны нормальных значений некоторых основных ВВ для обычных измерений приведены в табл. 2.3.

Области нормальных значений ВВ в специальных измерениях оговариваются отдельно в описании СИ или в методиках проведения измерений.

Таблица 2.3. Диапазоны нормальных значений влияющих величин

Основные метрологические термины и определения: по РМГ 29-99 (с изменениями от 04.08.2010)
Влияющая величинаЗначение
Температура окружающей среды, °С20±5 или20±2
Относительная влажность воздуха, %55. 60
Атмосферное давление, кПа (мм рт. ст.)100 ±4 (750 ±30)
Действующее значение напряжения питающей сети, В220±10%
Частота напряжения питающей сети, Гц50±1%
Максимальный коэффициент нелинейных искажений напряжения питающей сети, %5

Диапазоны рабочих условий эксплуатации для СИ разного назначения различны. Скажем, для СИ лабораторного применения это может быть диапазон температур О. +40 °С (рис. 2.6).

Для СИ промышленного применения области рабочих значений ВВ являются более широкими, чем, скажем, для лабораторных СИ. Измерительная аппаратура военного назначения имеет еще более широкие области рабочих значений ВВ.

Зная класс точности, коэффициенты влияния окружающей среды (например, температурный коэффициент), а также коэффициенты влияния неинформативных параметров измеряемых сигналов (например, частоты периодического сигнала напряжения при измерении действующего значения), можно оценить значение дополнительной погрешности и затем найти суммарную инструментальную, сложив основную и дополнительную составляющие.

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность

Рис. 2.6. Диапазоны возможных значений влияющей величины — температуры окружающей среды

Рассмотрим пример нахождения оценки дополнительной составляющей инструментальной погрешности на примере влияния только одной (но самой важной и, к счастью, наиболее легко определяемой) ВВ — температуры. Допустим, после выполнения эксперимента по классу точности миллиамперметра найдена его основная инструментальная погрешность Δ0 = ±1,0 мА; температура в ходе эксперимента была зафиксирована +28 °С. Температурный коэффициент в паспорте на прибор определен таким образом: «. дополнительная погрешность на каждые 10°С отличия от номинальной температуры +20 °С равна основной погрешности в пределах изменения температуры окружающей среды от 0 до +50 °С». Тогда предельное значение дополнительной абсолютной погрешности Δд в данном случае определяется следующим образом:

Методическая погрешность

Как известно, погрешность результата измерения определяется не только классом точности СИ. Источниками недостоверности результата могут быть и другие причины. Рассмотрим примеры, поясняющие появление методической составляющей общей погрешности результата.

Представим эксперимент по косвенному измерению мощности на активной нагрузке R методом амперметра и вольтметра (рис. 2.7). В результате простого перемножения показаний вольтметра UV и амперметра IA мы получаем не совсем то значение, которое следовало бы, поскольку в этом эксперименте возникает погрешность, определяемая не классами точности приборов, а другими их характеристиками (например, внутренними сопротивлениями) и методом их использования (например, схемой включения).

Вольтметр в этой схеме реагирует на сумму (UR + UA), т.е. на сумму падений напряжений на нагрузке R и на внутреннем сопротивлении амперметра RA. Показания вольтметра UV, вычисленное Р и действительное Рд значения мощности, соответственно, равны:

PД = I 2 R (2.10)

Таким образом, в данном случае причина ошибки в наличии конечного (хоть и малого, но не нулевого) внутреннего сопротивления амперметра RA .

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность

Рис. 2.7. Возникновение методической погрешности при различном подключении приборов:

а — вольтметр—амперметр; б — амперметр—вольтметр

Значение методической погрешности результата измерения мощности в абсолютном Δ и относительном δ видах в данном случае можно оценить следующим образом:

δ = 100Δ/PД = 100RA/R (2.12)

Зная значение сопротивления амперметра RA, можно, во-первых, оценить значение методической погрешности для данного случая, а во-вторых, можно скорректировать (исправить) результат вычисления мощности.

Рассмотрим количественный пример. Пусть в схеме рис. 2.7a, использован амперметр с внутренним сопротивлением RA = 10 Ом. Получены показания вольтметра и амперметра: UV = 250 В, IА = 2 А. Вычисленная по этим показаниям мощность Р = = 500 Вт. Абсолютная методическая погрешность Δ = I 2 ARA = 4•10 = 40 Вт, что составляет 8 % результата измерения. Правда, в данном случае, при точном знании сопротивления RA, знак и значение этой погрешности известны точно. Таким образом, эту составляющую в этом примере можно практически полностью скомпенсировать (простым уменьшением вычисленного результата Р на значение Δ = 40 Вт).

Отметим, что изменение схемы включения приборов (перенос амперметра ближе к источнику ЭДС Е, рис. 2.7б) не исключает методическую погрешность, а просто несколько меняет ее природу. В этом случае причиной погрешности будет конечное внутреннее сопротивление RV вольтметра, текущий через него ток IV, а значит несколько завышенное показание амперметра IA= IR+ IV.

Чем меньше отношение значений сопротивления амперметра ra и нагрузки R в схеме рис. 1.13, а, тем лучше, т.е. тем меньше погрешность.

Для второй схемы (см. рис. 2.7б), чем выше сопротивление вольтметра RV по сравнению с сопротивлением нагрузки R, тем лучше.

Можно было бы по отдельности измерять напряжение и ток, поочередно включая вольтметр и амперметр. Но при такой организации эксперимента необходимо иметь уверенность, что измеряемые величины не изменяются в процессе эксперимента. Иначе может появиться значительная динамическая погрешность.

Погрешность взаимодействия

Эта составляющая общей погрешности результата возникает из-за конечных сопротивлений источника сигнала и прибора. На рис. 2.8 показан вольтметр, входное сопротивление которого хоть и велико, но не бесконечно.

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность

Рис. 2.8. Погрешность взаимодействия вольтметра и источника напряжения

При подключении вольтметра к источнику ЭДС в цепи потечет ток I, определяемый значением ЭДС ЕX а также значениями внутреннего сопротивления источника Rи и входного сопротивления прибора RV. Поэтому измеряемое вольтметром напряжение всегда будет несколько меньше значения ЭДС ЕX, что и приводит к появлению погрешности взаимодействия ΔВЗ. Погрешность взаимодействия ΔВЗ вольтметра и источника напряжения определяется следующим образом:

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность(2.13)

Оценим значение погрешности взаимодействия на примере. Предположим, к источнику ЭДС ЕХ = 10 В, имеющему внутреннее сопротивление RИ = 10 Ом, подключен аналоговый вольтметр с внутренним сопротивлением RV = 10 кОм. Пренебрегая всеми остальными погрешностями, определим показание прибора, значения абсолютной и относительной погрешностей взаимодействия. В данном случае показание вольтметра

UV = 10В•10кOм/(10кОм + 0,01кОм) = 9,99 В. Абсолютное и относительное значения погрешности взаимодействия равны соответственно:

При измерениях тока амперметрами также возникает погрешность взаимодействия (рис.2.9).

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность

Рис. 2.9. Влияние амперметра на ток в цепи

Амперметр имеет малое, но не нулевое внутреннее сопротивление RA, и при включении его в цепь ток в ней несколько уменьшается.

Если пренебречь малым значением внутреннего сопротивления RИ источника Е, считая, что оно гораздо меньше сопротивления нагрузки RН (RИ

Дата добавления: 2018-06-27 ; просмотров: 4501 ; Мы поможем в написании вашей работы!

Источник

ЧИТАТЬ КНИГУ ОНЛАЙН: Метрология, стандартизация и сертификация

НАСТРОЙКИ.

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность

СОДЕРЖАНИЕ.

СОДЕРЖАНИЕ

что такое дополнительная погрешность. Смотреть фото что такое дополнительная погрешность. Смотреть картинку что такое дополнительная погрешность. Картинка про что такое дополнительная погрешность. Фото что такое дополнительная погрешность

В. А. Бисерова, Н. В. Демидова, А. С. Якорева

Метрология, стандартизация и сертификация.

1. Предмет и задачи метрологии

Под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.

Происхождение самого термина «метрология» возводят к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец ХХ в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Таким образом, можно сказать, что метрология изучает:

1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;

2) измерения физических величин и технических параметров, а также свойств и состава веществ;

3) измерения для контроля и регулирования технологических процессов.

Выделяют несколько основных направлений метрологии:

1) общая теория измерений;

2) системы единиц физических величин;

3) методы и средства измерений;

4) методы определения точности измерений;

5) основы обеспечения единства измерений, а также основы единообразия средств измерения;

6) эталоны и образцовые средства измерений;

7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения.

Следует различать также объекты метрологии: 1) единицы измерения величин;

2) средства измерений;

3) методики, используемые для выполнения измерений и т. д.

Метрология включает в себя: во-первых, общие правила, нормы и требования, во-вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о:

1) физических величинах, их единицах, а также об их измерениях;

2) принципах и методах измерений и о средствах измерительной техники;

3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;

4) обеспечении единства измерений, эталонах, образцах;

5) государственной метрологической службе;

6) методике поверочных схем;

7) рабочих средствах измерений.

В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

2 Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

3. Основные характеристики измерений

Выделяют следующие основные характеристики измерений:

1) метод, которым проводятся измерения;

2) принцип измерений;

3) погрешность измерений;

4) точность измерений;

5) правильность измерений;

6) достоверность измерений.

Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.

Существует несколько критериев классификации методов измерений.

1. По способам получения искомого значения измеряемой величины выделяют:

1) прямой метод (осуществляется при помощи прямых, непосредственных измерений);

2. По приемам измерения выделяют:

1) контактный метод измерения;

2) бесконтактный метод измерения.

Контактный метод измерения основан на непосредственном контакте какой-либо части измерительного прибора с измеряемым объектом.

При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *