Параллелепи́пед (от греч. παράλλος — параллельный и греч. επιπεδον — плоскость) — призма, основанием которой служит параллелограмм, или (равносильно) многогранник, у которого шесть граней и каждая из них параллелограмм.
Содержание
Типы параллелепипеда
Различается несколько типов параллелепипедов:
Основные элементы
Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.
Свойства
Основные формулы
Прямой параллелепипед
Площадь боковой поверхности Sб=Ро*h, где Ро — периметр основания, h — высота
Площадь полной поверхности Sп=Sб+2Sо, где Sо — площадь основания
Прямоугольный параллелепипед
Площадь боковой поверхности Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда
Площадь полной поверхности Sп=2(ab+bc+ac)
Объём V=abc, где a, b, c — измерения прямоугольного параллелепипеда.
Площадь боковой поверхности Sб=4a², где а — ребро куба
Площадь полной поверхности Sп=6a²
Произвольный параллелепипед
В математическом анализе
В математическом анализе под n-мерным прямоугольным параллелепипедом понимают множество точек вида
Смотреть что такое «Параллелепипед» в других словарях:
ПАРАЛЛЕЛЕПИПЕД — греч., от parallelos., параллельный, и epidon, поверхность. Четырехсторонняя призма, у которой противоположные стороны параллельны между собой. Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней.… … Словарь иностранных слов русского языка
Параллелепипед — Параллелепипед. ПАРАЛЛЕЛЕПИПЕД (от греческого parallelos параллельный и epipedon плоскость), призма, основание которой параллелограмм. … Иллюстрированный энциклопедический словарь
параллелепипед — призма, ромбоэдр, шестигранник Словарь русских синонимов. параллелепипед сущ., кол во синонимов: 4 • многогранник (38) • … Словарь синонимов
ПАРАЛЛЕЛЕПИПЕД — (от греч. parallelos параллельный и epipedon плоскость) призма, основанием которой служит параллелограмм … Большой Энциклопедический словарь
ПАРАЛЛЕЛЕПИПЕД — ПАРАЛЛЕЛЕПИПЕД, параллелепипеда, муж. (от греч. parallelos параллельный и epipedon поверхность) (мат.). Шестигранник, у которого противоположные грани равны и параллельны. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ПАРАЛЛЕЛЕПИПЕД — ПАРАЛЛЕЛЕПИПЕД, а, муж. В математике: призма, основанием к рой служит параллелограмм. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
Параллелепипед — шестигранник, каждая пара противоположных гранейкоторого суть параллелограммы равной величины и параллельные междусобой … Энциклопедия Брокгауза и Ефрона
параллелепипед — а, м. parallélépipède m. <гр. parallelos + epidepon плоскость. геом. Шестигранник, сторонами которого являются параллелограммы. Крысин 1998. Цвет его <сапфира> лазуревой, сложение листоватое; представляет шести или многоугольную призьму … Исторический словарь галлицизмов русского языка
ПАРАЛЛЕЛЕПИПЕД — призма, основанием которой является (см.) … Большая политехническая энциклопедия
Параллелепипед — (греч. parallelepípedon, от parállelos параллельный и epípedon плоскость) шестигранник, противоположные грани которого попарно параллельны. П. имеет 8 вершин, 12 рёбер; его грани представляют собой попарно равные параллелограммы. П.… … Большая советская энциклопедия
На прошлых занятиях мы рассматривали плоские фигуры.
В реальности же каждый предмет, какой бы он формы не был, занимает некоторую часть пространства.
Даже у самого тонкого листа бумаги имеется толщина.
Если взять стопку таких листов, то объем стопки бумаги будет хорошо заметен.
Раздел геометрии, в котором изучаются фигуры и их свойства в пространстве, называется стереометрией.
Слово стереометрия происходит от древнегреческого «стериос»- объемный, пространственный и «метрио»- измерять.
Базовыми фигурами в пространстве, как и на плоскости, является точка, прямая и плоскость, из которых образуются объемные геометрические фигуры, тела, пространства.
Геометрическое тело, состоящее из плоских многоугольников, называют многогранником.
Существует огромное множество многогранников: выпуклые, невыпуклые, правильные и т.д.
На данном уроке познакомимся с выпуклым прямоугольным многоугольником, который называется параллелепипед.
Выясним, как прямоугольный параллелепипед выглядит и из каких элементов он состоит.
Рассмотрим его свойства.
Научимся изображать данный многоугольник на плоскости и вычислять площадь его поверхности.
Разберем несколько примеров решения задач.
Прямоугольный параллелепипед
Каждый может себе представить и знает, как выглядят детские кубики.
С кубиками и конструктором из брусочков прямоугольной формы многие знакомы с раннего детства: строили домики, башенки, дороги, затем все это радостно рушили.
Всем известно, как выглядит коробка конфет или долька шоколада. Многие получали подарки в красивой красочной коробке с ярким бантом, читали книги с увлекательными рассказами и сказками.
Если обратим внимание на форму, то заметим, что все изображенные объекты имеют некоторое сходство, они представляют собой прямоугольный параллелепипед.
Прямоугольный параллелепипед-это объемная геометрическая фигура, многогранник, состоящий из шести прямоугольников.
Плоские фигуры, такие как квадрат, прямоугольник, треугольник изобразить на плоскости легко, они являются её частью.
Любую объемную фигуру изобразить на плоскости затруднительно.
Многогранник необходимо изобразить так, чтобы была заметна объемность фигуры.
Пунктирная линия дает возможность понять наблюдателю, как расположен многогранник и определить, откуда необходимо смотреть на него.
Если мы изобразим параллелепипед только сплошной линией, то на рисунке будут изображены различные четырехугольники, соединенные между собой, а объемного представления многоугольника данный рисунок не даст.
Даже если нам известно, что изображен прямоугольный параллелепипед, то все равно непонятно какой стороной расположен многогранник к наблюдателю.
Если невидимые линии на рисунке изобразить пунктирными линиями, то у фигуры сразу будет заметен объем.
Прямоугольный параллелепипед изображают так:
Прямоугольники, из которых состоит прямоугольный параллелепипед, называют гранями, причем противоположные грани его попарно равны.
Верхняя грань равна нижней, правая равна левой, передняя грань равна задней.
Грань, на которой стоит прямоугольный параллелепипед, называют нижним основанием, противоположную грань называют верхним основанием параллелепипеда.
Остальные четыре грани называют боковыми гранями.
Стороны граней называют ребрами параллелепипеда.
Концы ребер, т.е. вершины граней, называют вершинами параллелепипеда.
На рисунке вершины изображены точками.
У меня есть дополнительная информация к этой части урока!
Для любого выпуклого многогранника, в том числе и для параллелепипеда, справедливо утверждение: Г + В – Р = 2, где
Г— число граней
В— число вершин
Р— число ребер
Данное утверждение говорит о том, что количество вершин и граней многоугольника вместе взятых всегда на два больше количества ребер.
Это правило называют теоремой Эйлера в честь ее создателя математика, механика Леонарда Эйлера.
Проверим справедливость теоремы Эйлера для разных фигур.
Параллелепипед состоит из следующих элементов: 6 граней (Г = 6), 8 вершин (В = 8), 12 ребер (Р = 12).
Г + В – Р = 6 + 8 – 12 = 14 – 12 = 2
Получили верное равенство.
Пирамида- это многогранник, в основании которого лежит многоугольник.
Грани пирамиды- это треугольники, сходящиеся в общую вершину.
Тетраэдр- пирамида, состоящая из 4 граней- равных треугольников (Г = 4), 4 вершин (В = 4) и 6 ребер (Р = 6).
Г + В – Р = 4 + 4 – 6 = 8 – 6 = 2
Получили верное равенство.
Четырехугольная пирамида имеет 5 граней: квадрат в основании и 4 треугольника в качестве боковых граней (Г = 5), 5 вершин (В = 5), 8 ребер (Р = 8).
Г + В – Р = 5 + 5 – 8 = 10 – 8 = 2
Получили верное равенство
Прямоугольный параллелепипед имеет три линейные величины (три измерения): ширину, длину и высоту.
Величину прямоугольного параллелепипеда определяют длинами трех ребер, исходящих из одной вершины.
Если все три величины прямоугольного параллелепипеда равны, то такой параллелепипед называют кубом.
Куб по-другому называют правильный гексаэдр (от греческого «hex»- шесть и «hedra»- грань).
Он имеет все те же элементы, что и прямоугольный параллелепипед.
Все шесть граней куба равны, следовательно, и все 12 ребер между собой равны.
У меня есть дополнительная информация к этой части урока!
Куб относится к Платоновским телам.
Платоновскими телами называют объемные геометрические тела выпуклой формы, которые состоят из одинаковых по форме и размеру многоугольников, а в каждой вершине такого многогранника сходится одинаковое число ребер.
Всего существует пять Платоновских тел. Такие многогранники известны с древних времен.
В Древней Греции существовали различные философские школы, в которых пытались разъяснить существование и выяснить предназначение геометрических тел правильной формы.
Пифагорейцы считали, что материя состоит из четырех составляющих: огня, воды, воздуха, земли.
Ассоциировали четыре правильных многогранника (тетраэдр, гексаэдр, октаэдр, икосаэдр) с этими стихиями.
Пятый правильный многогранник (додекаэдр) олицетворял все мироздание, Вселенную, его стали называть «пятая сущность».
Учения Пифагорейцев изложил в своих трудах древнегреческий философ, ученый Платон. В связи с этим правильные многогранники стали называть Платоновскими телами.
Число и вид граней
Число ребер, сходящихся в вершине
Пройти тест и получить оценку можно после входа или регистрации
Площадь поверхности прямоугольного параллелепипеда
Если посмотреть вокруг, то мы можем заметить огромное множество объектов, имеющих форму прямоугольного параллелепипеда или напоминающих его форму.
Так, например, большинство зданий и помещений, шкаф (тумбочка), столешница, аквариум, коробка, кирпичи и многое другое представляют собой прямоугольный параллелепипед.
Такой многогранник имеет широкое применение в различных областях нашей жизни, и это неспроста:
1) прямоугольная форма параллелепипеда удобна для деления целого на части
2) объекты прямоугольной формы легко надстраивать и совмещать
3) прямоугольный параллелепипед является одним из самых устойчивых многогранников
Часто приходится определять площадь поверхности объекта, имеющего форму прямоугольного параллелепипеда.
Давайте разберемся, как и с помощью каких формул можно вычислить площадь его поверхности.
Допустим, у нас есть коробка, имеющая форму прямоугольного параллелепипеда.
Попробуем изобразить развертку данного геометрического тела.
Площадь этой развертки- это и есть площадь поверхности прямоугольного параллелепипеда.
Так как прямоугольный параллелепипед состоит из шести граней, имеющих форму прямоугольников, причем противоположные грани равны по величине, то площадь поверхности прямоугольного параллелепипеда будет равна сумме площадей всех его шести граней.
Пусть для нашего прямоугольного параллелепипеда три ребра, выходящие из одной вершины, имеют значения а, b, h.
а— ширина прямоугольного параллелепипеда
b— длина прямоугольного параллелепипеда
h— высота прямоугольного параллелепипеда
Найдем площадь всех граней.
Воспользуемся формулой для расчета площади прямоугольника: площадь прямоугольника равна произведению его ширины на длину.
Ребра, лежащие напротив ребер а, b, h, будут иметь такие же значения длины, так как противолежащие ребра прямоугольного параллелепипеда равны.
В таком случае получаем:
1) Площадь нижнего основания равна произведению (a ∙ b)
2) Площадь верхнего основания также равна произведению (a ∙ b)
3) Площадь левой боковой и правой боковой граней равны, как противолежащие, площадь каждой из них определяется произведением (b∙h)
4) Передняя и задняя боковые грани равны, а значение площади каждой из них будет определяться произведением (а ∙h)
Сложим площади всех граней прямоугольного параллелепипеда, получим общую площадь его поверхности.
Упростим выражение, вынесем 2 за скобку.
Формула площади поверхности прямоугольного параллелепипеда будет выглядеть так:
Площадь двух оснований прямоугольного параллелепипеда (это два прямоугольника) найдем по формуле:
Sосн= 2 (a ∙ b).
Площадь боковой поверхности прямоугольного параллелепипеда можно найти по формуле:
Sбок= 2h ∙(a + b).
В нашем случае а, b— это стороны основания, h— это высота прямоугольного параллелепипеда (боковое ребро).
Так как основанием прямоугольного параллелепипеда является прямоугольник, то периметр основания прямоугольного параллелепипеда определяется равенством
Роснов = 2 ∙ (a+b).
Подставим Роснов в формулу Sбок= 2h∙ (a+b) вместо выражения 2 ∙ (a+b).
Тогда площадь боковой поверхности можно найти так:
Sбок= Роснов∙ h.
Определим площадь поверхности куба.
Чтобы найти площадь поверхности куба, необходимо сложить площади всех его граней.
Площадь одной грани куба найдем по формуле площади квадрата:
S=a2
а— это сторона квадрата (ребро куба).
Так как все 6 граней куба представляют собой равные по площади квадраты, следовательно, чтобы найти площадь всей поверхности куба, необходимо площадь одной грани умножить на их количество.
Формула площади поверхности куба выглядит так:
Рассмотрим решение нескольких практических задач.
В процессе любого строительства или ремонта очень часто встает вопрос о том, сколько необходимо потратить строительного и отделочного материала или как рассчитать расход краски.
Задача №1.
Какое количество краски понадобится, чтобы полностью покрасить бак прямоугольной формы?
Ширина бака 2 метра, длина 3 метра, высота 1 метр.
Известно, что на 1 м 2 расходуется 200 г краски.
Чтобы рассчитать количество краски, которое нужно затратить на покраску бака, необходимо определить площадь окрашиваемой поверхности, затем, зная норму расхода краски на единицу площади, можно рассчитать расход краски на всю окрашиваемую поверхность.
Пусть m1— масса краски, которая расходуется на 1 м 2
m2— масса краски, которая необходима для покраски всего бака.
Задача №2
Сколько квадратных метров стекла понадобится на изготовление аквариума кубической формы длиной 100 см?
Для вычисления площади поверхности аквариума в квадратных метрах необходимо длину аквариума перевести из сантиметров в метры.
Вспомним, 1 м = 100 см.
Если бы аквариум необходимо было изготовить только из боковых стенок и основания, то из стекла пришлось бы вырезать всего 5 квадратных граней.
В таком случае формула для вычисления площади поверхности аквариума приняла бы вид
Задача №3
Хозяйка решила покрасить стены в комнате.
Комната имеет форму прямоугольного параллелепипеда.
Ширина комнаты 3 метра, длина комнаты 4 метра, высота комнаты 3 метра.
Пусть Sc— общая площадь стен комнаты.
Sд— площадь дверного проема.
Sо— площадь оконного проема.
S— площадь стен комнаты за исключением площади дверного и оконного проемов.
Пройти тест и получить оценку можно после входа или регистрации
Параллелепипед — это многогранник, у которого шесть граней.
У параллелепипеда каждая грань представляют собой параллелограмм, противоположные грани которого равны.
Прямоугольный параллелепипед — это многогранник с шестью гранями, каждая из которых является прямоугольником.
Свойства прямоугольного параллелепипеда
Диагональ прямоугольного параллелепипеда — это отрезок, который соединяет две противоположные вершины. Все диагонали равны, пересекаются в одной точке и делятся ею пополам.
Схема создания прямоугольного параллелепипеда
Для сборки параллелепипеда нужно распечатать развертку на обычном листе формата А4. Для печати можно использовать белую или цветную бумагу.
Как сделать развертку прямоугольного параллелепипеда:
Развертка прямоугольного параллелепипеда с размерами
Геометрические размеры параллелепипеда №1:
Прямоугольный параллелепипед с такими размерами выглядит так:
Геометрические размеры параллелепипеда №2:
Прямоугольный параллелепипед с такими размерами выглядит так:
Геометрические размеры параллелепипеда №3:
Прямоугольный параллелепипед с такими размерами выглядит так:
Так выглядит соотношение размеров параллелепипедов для представленных разверток:
Развертка может пригодиться, если нужно сделать прямоугольный параллелепипед из бумаги или картона на уроке математики в 5 классе. Кроме школьных уроков эти знания пригодятся работникам производств. Например, на заводе по производству упаковки.
Также развертка помогает решать некоторые задачи. Например, находить кратчайшее расстояние между точками на поверхности геометрического тела.