что такое диспропорционирование в химии
Диспропорционирование
Диспропорциони́рование (дисмутация) — химическая реакция, в которой один и тот же элемент выступает и в качестве окислителя, и в качестве восстановителя, причём в результате реакции образуются соединения, которые содержат один и тот же элемент в разных степенях окисления.
Примером может служить реакция взаимодействия оксида азота(IV) с водой:
или реакция разложения хлората калия (реакция Тищенко):
Реакция диспропорционирования обратна реакции конпропорционирования. Чтобы понять, при каких условиях возможна реакция диспропорционирования, можно использовать диаграмму Фроста, диаграмму Пурбе или таблицу окислительно-восстановительных потенциалов.
Смотреть что такое «Диспропорционирование» в других словарях:
ДИСПРОПОРЦИОНИРОВАНИЕ — в неорганической химии реакция самоокисления самовосстановления, напр. (над атомами приведены их степени окисления): 4KCl+5O3 3KCl+7O4 + KCl 1. Диспропорционирование в органической химии обычно перераспределение атомов или их группировок между… … Большой Энциклопедический словарь
ДИСПРОПОРЦИОНИРОВАНИЕ — ДИСПРОПОРЦИОНИРОВАНИЕ, одновременное окисление и восстановление химического вещества. В качестве примера можно привести диспропорционирование хлорида меди (I), при котором одновременно происходит окисление до хлорида меди (II) и восстановление до … Научно-технический энциклопедический словарь
диспропорционирование — disproporcionavimasis statusas T sritis chemija apibrėžtis Atomų arba grupių persiskirstymas tarp dviejų vienodų molekulių, radikalų, grupių. atitikmenys: angl. dismutation; disproportionation rus. дисмутация; диспропорционирование ryšiai:… … Chemijos terminų aiškinamasis žodynas
диспропорционирование — disproporcionavimasis statusas T sritis chemija apibrėžtis Elemento oksidacijos laipsnio padidėjimas ir sumažėjimas vienodų molekulių reakcijos metu. atitikmenys: angl. dismutation; disproportionation rus. дисмутация; диспропорционирование ryšiai … Chemijos terminų aiškinamasis žodynas
ДИСПРОПОРЦИОНИРОВАНИЕ — (от лат. dis приставка, означающая отрицание, и proportio соразмерность) (дисмутация). В органической химии. Перераспределение атомов или их группировок между двумя одинаковыми молекулами или своб. радикалами, напр.: Иногда Д. называют также… … Химическая энциклопедия
ДИСПРОПОРЦИОНИРОВАНИЕ — в неорганич. химии реакция самоокисления самовосстановления, напр. (над атомами приведены их степени окисления): +5 +7 1 4КС1О3 >ЗКСlO4 + КС1. Д. в органич. химии обычно перераспределение атомов или их группировок между двумя одинаковыми… … Естествознание. Энциклопедический словарь
диспропорционирование — диспропорцион ирование, я … Русский орфографический словарь
диспропорционирование — дис/пропорци/он/ир/ова/ни/е [й/э] … Морфемно-орфографический словарь
ДИСПРОПОРЦИОНИРОВАНИЕ ВОДОРОДА — окислительно восстановительный процесс внутреннего перераспределения водорода, при котором одни молекулы вещества гидрируются за счет дегидрирования др. без изменения массы и элементарного состава системы в целом. Пример процесса Д. в. в… … Геологическая энциклопедия
Диспропорционирование
Из Википедии — свободной энциклопедии
Диспропорциони́рование (дисмутация) — химическая реакция, в которой один и тот же элемент выступает и в качестве окислителя, и в качестве восстановителя, причём в результате реакции образуются соединения, которые содержат один и тот же элемент в разных степенях окисления.
Примером может служить реакция взаимодействия оксида азота(IV) с водой:
<\mbox
или реакция разложения хлората калия :
<\mbox
Некоторые реакции диспропорционирования идут только при определенном рН среды. Например, иод, так же как и сера, диспропорционирует только в щелочной среде:
<5><\stackrel <-1><\mbox>><>^<<>—<>>+<><\stackrel <+5><\mbox>><\mbox
Реакция диспропорционирования обратна реакции конпропорционирования. Чтобы понять, при каких условиях возможна реакция диспропорционирования, можно использовать диаграмму Фроста, диаграмму Пурбе или таблицу окислительно-восстановительных потенциалов.
ДИСПРОПОРЦИОНИРОВАНИЕ
2СН 3 СН=СН 2 D СН 3 СН=СНСН 3 + СН 2 =СН 2
Смотреть что такое «ДИСПРОПОРЦИОНИРОВАНИЕ» в других словарях:
ДИСПРОПОРЦИОНИРОВАНИЕ — в неорганической химии реакция самоокисления самовосстановления, напр. (над атомами приведены их степени окисления): 4KCl+5O3 3KCl+7O4 + KCl 1. Диспропорционирование в органической химии обычно перераспределение атомов или их группировок между… … Большой Энциклопедический словарь
ДИСПРОПОРЦИОНИРОВАНИЕ — ДИСПРОПОРЦИОНИРОВАНИЕ, одновременное окисление и восстановление химического вещества. В качестве примера можно привести диспропорционирование хлорида меди (I), при котором одновременно происходит окисление до хлорида меди (II) и восстановление до … Научно-технический энциклопедический словарь
диспропорционирование — disproporcionavimasis statusas T sritis chemija apibrėžtis Atomų arba grupių persiskirstymas tarp dviejų vienodų molekulių, radikalų, grupių. atitikmenys: angl. dismutation; disproportionation rus. дисмутация; диспропорционирование ryšiai:… … Chemijos terminų aiškinamasis žodynas
диспропорционирование — disproporcionavimasis statusas T sritis chemija apibrėžtis Elemento oksidacijos laipsnio padidėjimas ir sumažėjimas vienodų molekulių reakcijos metu. atitikmenys: angl. dismutation; disproportionation rus. дисмутация; диспропорционирование ryšiai … Chemijos terminų aiškinamasis žodynas
ДИСПРОПОРЦИОНИРОВАНИЕ — в неорганич. химии реакция самоокисления самовосстановления, напр. (над атомами приведены их степени окисления): +5 +7 1 4КС1О3 >ЗКСlO4 + КС1. Д. в органич. химии обычно перераспределение атомов или их группировок между двумя одинаковыми… … Естествознание. Энциклопедический словарь
Диспропорционирование — (дисмутация) химическая реакция, в которой один и тот же элемент выступает и в качестве окислителя, и в качестве восстановителя, причём в результате реакции образуются соединения, которые содержат один и тот же элемент в разных степенях окисления … Википедия
диспропорционирование — диспропорцион ирование, я … Русский орфографический словарь
диспропорционирование — дис/пропорци/он/ир/ова/ни/е [й/э] … Морфемно-орфографический словарь
ДИСПРОПОРЦИОНИРОВАНИЕ ВОДОРОДА — окислительно восстановительный процесс внутреннего перераспределения водорода, при котором одни молекулы вещества гидрируются за счет дегидрирования др. без изменения массы и элементарного состава системы в целом. Пример процесса Д. в. в… … Геологическая энциклопедия
Окислительно-восстановительные реакции
Окислительно-восстановительные реакции — это химические реакции, сопровождающиеся изменением степени окисления у атомов реагирующих веществ. При этом некоторые частицы отдают электроны, а некоторые получают.
Окислители и восстановители
Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается. Окислители при этом восстанавливаются.
Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается. Восстановители при этом окисляются.
Химические вещества можно разделить на типичные окислители, типичные восстановители, и вещества, которые могут проявлять и окислительные, и восстановительные свойства. Некоторые вещества практически не проявляют окислительно-восстановительную активность.
К типичным окислителям относят:
Типичные восстановители – это, как правило:
Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства.
Типичные окислители и восстановители приведены в таблице.
В лабораторной практике наиболее часто используются следующие окислители :
Классификация окислительно-восстановительных реакций
Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования.
C 0 + 4H N +5 O3(конц) = C +4 O2 ↑ + 4 N +4 O2 ↑+ 2H2O.
Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента переходят в разные продукты, например:
Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один и тот же элемент одного реагента, который при этом переходит в разные продукты:
3Br2 + 6 KOH → 5KBr + KBrO3 + 3 H2O,
Репропорционирование (конпропорционирование, контрдиспропорционирование ) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.
Основные правила составления окислительно-восстановительных реакций
Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:
Окисление — это процесс отдачи электронов восстановителем.
Восстановление — это процесс присоединения электронов окислителем.
В окислительно-восстановительных реакциях соблюдается электронный баланс: количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.
Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.
«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:
Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.
Степень окисления меняют атомы марганца и серы:
Mn +7 + 1e = Mn +6
Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс. Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!
Схема составления уравнений ОВР методом электронного баланса:
Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.
Общие закономерности протекания окислительно-восстановительных реакций
Самый очевидный фактор, определяющий — среда раствора реакции — кислая, нейтральная или щелочная. Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:
Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!
Обратите внимание! Е сли среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.
При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.
Рассмотрим наиболее типичные лабораторные окислители.
Основные схемы окислительно-восстановительных реакций
Схема восстановления перманганатов
В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.
Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.
3 K2S + 2 KMnO4 + 4 H2O = 2 MnO2↓ + 3 S↓ + 8 KOH,
Распространенной ошибкой в этой реакции является указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.
При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.
Перманганаты окисляют:
KMnO4 + неМе (низшая с.о.) = неМе 0 + другие продукты
KMnO4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты
KMnO4 + Ме 0 = Ме (стабильная с.о.) + др. продукты
Схема восстановления хроматов/бихроматов
Соединения хрома VI окисляют:
Хромат/бихромат + неМе (отрицательная с.о.) = неМе 0 + другие продукты
Хромат/бихромат + неМе (промежуточная положительная с.о.) = неМе(высшая с.о.) + др. продукты
Хромат/бихромат + Ме 0 = Ме (стабильная с.о.) + др. продукты
Хромат/бихромат + P, As (отрицательная с.о.) = P, As +5 + другие продукты
Разложение нитратов
Например:
Активные металлы в природе встречаются в виде солей (KCl, NaCl).
Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe2O3, Al2O3 и др.).
Неактивные металлы в природе встречаются в виде простых веществ.
Некоторые исключения!
Разложение нитрата аммония :
При нагревании нитрат аммония разлагается. При температуре до 270 о С образуется оксид азота (I) («веселящий газ») и вода:
Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.
При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород :
При разложении нитрита аммония NH4NO2 также происходит контрдиспропорционирование.
Термическое разложение нитрата марганца (II) сопровождается окислением металла:
Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:
Нитрат никеля (II) разлагается до нитрита при нагревании до 150 о С под вакуумом и до оксида никеля при более высоких температурах (разложения нитрата никеля в ЕГЭ по химии не должно быть, но это не точно)).
Окислительные свойства азотной кислоты
Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.
Азотная кислота + металл = соль металла + продукт восстановления азота + H2O
Некоторые закономерности позволят верно определять основной продукт восстановления металлами азотной кислоты в реакции:
пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой
Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:
Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.
Взаимодействие металлов с серной кислотой
Например :
Концентрированная серная кислота взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.
H2SO4 (конц) + металл = соль металла + продукт восстановления серы (SO2, S, H2S) + вода
Основные принципы взаимодействия концентрированной серной кислоты с металлами:
1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;
2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием ;
3. С неактивными металлами концентрированная серная кислота восстанавливается до оксида серы (IV).
Cu 0 + 2H2 S +6 O4(конц) = Cu +2 SO4 + S +4 O2 + 2H2O
4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H2S 2- (в зависимости от температуры, степени измельчения и активности металла).
Пероксид водорода
При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O2. Например :
Классификация реакций
Существует несколько классификаций реакций, протекающих в неорганической и органической химии.
По характеру процесса
Так называют химические реакции, где из нескольких простых или сложных веществ получается одно сложное вещество. Примеры:
В результате реакции разложения сложное вещество распадается на несколько сложных или простых веществ. Примеры:
В ходе реакций замещения атом или группа атомов в молекуле замещаются на другой атом или группу атомов. Примеры:
К реакциям обмена относятся те, которые протекают без изменения степеней окисления и выражаются в обмене компонентов между веществами. Часто обмен происходит анионами/катионами:
AgF + NaCl = AgCl↓ + NaF
Окислительно-восстановительные реакции (ОВР)
Замечу, что окислителем и восстановителем могут являться только исходные вещества (а не продукты!) Окислитель всегда понижает свою СО, принимая электроны в процессе восстановления. Восстановитель всегда повышает свою СО, отдавая электроны в процессе окисления.
ОВР уравнивают методом электронного баланса, с которым мы подробно познакомимся в разделе «Решения задач».
Обратимые и необратимые реакции
Классическим примером обратимой реакции является синтез аммиака и реакция этерификации (из органической химии):
Необратимые реакции протекают только в одном направлении, до полного расходования одного из исходных веществ. Главное отличие их от обратимых реакций в том, что образовавшиеся продукты реакции не взаимодействуют между собой с образованием исходных веществ.
Примеры необратимых реакций:
NaOH + HCl = NaCl + H2O (образуется вода)
2Na + 2H2O = 2NaOH + H2 (сопровождается выделением большого количества тепла)
Реакции и агрегатное состояние фаз
Фазой в химии называют часть объема равновесной системы, однородную во всех своих точках по химическому составу и физическим свойствам и отделенную от других частей того же объема поверхностью раздела. Фаза бывает жидкой, твердой и газообразной.
К гетерогенным реакциям относятся следующие реакции (примеры): жидкость + газ, газ + твердое вещество, твердое вещество + жидкость. Примером такой реакции может послужить взаимодействие твердого цинка и раствора соляной кислоты:
К гомогенным реакциям относятся (примеры): жидкость + жидкость, газ + газ. Примером такой реакции может служить взаимодействие между растворами уксусной кислоты и едкого натра.
Реакции и их тепловой эффект
NaOH + HCl = NaCl + H2O + 56 кДж
К экзотермическим реакциям часто относятся реакции горения, соединения.
Исключением является взаимодействие азота и кислорода, при котором тепло поглощается:
Как уже было отмечено выше, если тепло выделяется во внешнюю среду, значит, система реагирующих веществ потеряло это тепло. Поэтому не должно казаться противоречием, что внутренняя энергия веществ в результате экзотермической реакции уменьшается.
Энтальпией называют (обозначение Н), количество термодинамической (тепловой) энергии, содержащееся в веществе. Иногда с целью «запутывания» в реакции вместо явного +Q при экзотермической реакции могут написать ΔH 0, так как внутренняя энергия веществ увеличивается. Например:
CaCO3 = CaO + CO2↑ ; ΔH > 0 (значит реакция эндотермическая, так как внутренняя энергия увеличивается)
Замечу, что не все реакции разложения являются эндотермическими. Широко известная реакция разложения дихромата аммония («вулканчик») является примером экзотермического разложения, при котором тепло выделяется.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.