Информация представляет собой понятие довольно емкое, вмещающее в себя весь окружающий нас мир (это вещи, явления, история, литература, искусство и многое другое). Всю информацию можно представить в двух формах:
Познакомимся с ними более детально.
Физические величины, а точнее их значения, характеризуют объекты и явления. Например, человека могут характеризовать такие физические величины, как масса тела, рост, температура тела, давление и т.д. В качестве явления, например, природы можно рассмотреть ураган, который будет характеризоваться такими физическими величинами, как скорость ветра, температура воздуха, количество выпавших осадков.
Некоторые физические величины по своей природе таковы, что могут принимать любые значения в определенном диапазоне. Эти значения могут находиться достаточно близко друг от друга, но тем не менее они различаются, а количество же значений, которое может принимать величина, бесконечно велико.
Подобные величины называют непрерывными, соответственно информацию, которая выражается с помощью этих величин, также называют непрерывной.
Помимо непрерывных величин существуют и другие, например, количество спортсменов на стадионе, количество атомов в молекуле и т.д. Подобные величины могут принимать только целые значения и не могут иметь дробных значений.
Величины, которые могут принимать не все возможные значения, а только вполне конкретные, называют дискретными. Дискретные величины характеризуются тем, что все их значения можно пронумеровать целыми числами.
Примерами дискретных величин являются:
Таким образом, различие между двумя формами информации строится на принципиальном различии природы величин. В то же время непрерывная и дискретная информация могут использоваться одновременно для более полного представления сведений об объектах и явлениях.
Готовые работы на аналогичную тему
Попробуем разобраться, что может объединять непрерывные и дискретные величины.
Рассмотрим простой пример и опишем наши рассуждения, в качестве примера возьмем пружинные весы. Масса тела, которую можно измерить с их помощью, представляет собой непрерывную величину. В данном случае информация о массе содержится в длине отрезка, на которую переместился указатель весов под непосредственным действием массы тела. Длина отрезка также представляет собой непрерывную величину.
Возникает вопрос, а можно ли по дискретному представлению восстановить непрерывную величину? Да, это действительно в определенной степени возможно, однако сделать это достаточно сложно, в результате восстанавливаемый образ может отличаться от подлинника.
Формы представления дискретной информации
В качестве имен можно использовать натуральные числа. Подобным образом нумеруются страницы книг, дома, деления на шкалах измерительных приборов. С помощью чисел можно пронумеровать все. Именно такая цифровая форма представления информации используется в ЭВМ.
В повседневной жизни цифровая форма представления информации не совсем практична. Традиционно информацию об объектах и явлениях окружающего мира мы представляем в форме слов и их последовательностей.
Слово является основным элементом в данной форме представления информации, с помощью него обозначаются имена объектов, действий, свойств и т.п.
Слова строятся из букв конкретного алфавита (например, русского). Помимо букв могут использоваться специальные символы: знаки препинания, математические символы и знаки и т.п. Разнообразные символы, которые мы используем, образуют алфавиты, на их основе, в свою очередь, можно построить различные объекты:
Во всех этих объектах заключена информация:
Эта информация по своей природе дискретна и может быть представлена в виде последовательности символов. Такая информация представляет собой особый вид дискретной информации, который называют символьным.
В настоящее время существует множество разных систем письменности, с помощью которых одна и та же информация может быть представлена на основе самых разных наборов символов и самых разных правил использования символов при построении слов, фраз, текстов.
Таким образом, разные алфавиты обладают одинаковой «изобразительной возможностью», т.е. с помощью одного алфавита можно изобразить информацию, которую удалось изобразить с помощью другого алфавита. Можно, к примеру, использовать алфавит, состоящий из 10 цифр, и с его помощью записать текст любой книги. При этом исключена потеря информации. Кроме того, можно использовать алфавит, состоящий только из двух символов (0 и 1). И его «изобразительная возможность» будет аналогичной.
Следовательно, символьная информация может быть представлена с помощью различных алфавитов без искажения содержания и смысла информации.
Помимо приведенных выше существуют и другие формы представления дискретной информации. К ним можно отнести чертежи, схемы, содержащие графическую информацию.
Дискретизация информации
Обмен информацией в системах обработки информации происходит при помощи сигналов. В качестве носителей сигналов могут выступать любые физические величины, которые представляют собой функции времени или определенное пространственное распределение сигналов. Параметры передаваемых временных функций (частоты, амплитуды, фазы, длительности импульсов или пространственного распределения последовательных импульсов, точек на изображении, сочетаний цветов на экране и др.) являются информационными параметрами сигнала.
Непрерывные сигналы в системе координат (уровень и время) описывают с помощью непрерывных функций. Преобразование аналогового сигнала в дискретный связано с его дискретизацией по уровню и во времени.
Дискретные сигналы довольно таки просто хранить и обрабатывать, поскольку они мало подвергаются искажениям под влиянием помех, причем последние легко обнаружить. В связи с этим дискретные сигналы наиболее широко применяются, чем непрерывные.
Преобразование непрерывного информационного множества аналоговых сигналов в дискретное множество называется дискретизацией или квантованием по уровню.
Квантование по уровню широко применяется в цифровых автоматах, поскольку производится отображение всевозможных значений величины X на дискретную область, состоящую из величин X, уровней квантования.
При дискретизации по времени (квантование по времени) непрерывная по времени функция преобразовывается в функцию дискретного аргумента времени. Дискретизация непрерывных сигналов построена на принципе представления их в виде взвешенных сумм. Органы чувств человека не совершенны, и в связи с этим окружающий нас мир мы воспринимаем дискретно. Использование различных приборов, которые увеличивают чувствительность или разрешающую способность, принципиально ничего не дает, меняет лишь шаг дискретизации.
Дискретизация — преобразование непрерывной функции в дискретную.
Квантование по уровню широко используется в цифровых автоматах. При квантовании по уровню производится отображение всевозможных значений величины на дискретную область, состоящую из величин уровня квантования.
— Самофалов К.Г., Романкевич А.М., Валуйский В.Н., Каневский Ю.С., Пиневич М.М. 1.3 Дискретизация информации // Прикладная теория цифровых автоматов. — К. : Вища школа, 1987. — 375 с.
Обратный процесс называется восстановлением. При дискретизации только по времени, непрерывный аналоговый сигнал заменяется последовательностью отсчётов, величина которых может быть равна значению сигнала в данный момент времени. Возможность точного воспроизведения такого представления зависит от интервала времени между отсчётами .
где — наибольшая частота спектра сигнала.
Содержание
Примечания
Литература
См. также
Ссылки
Это заготовка статьи о технике. Вы можете помочь проекту, исправив и дополнив её. Это примечание по возможности следует заменить более точным.
Полезное
Смотреть что такое «Дискретизация» в других словарях:
Дискретизация — процесс превращения непрерывного сигнала в цифровой, путем измерения числовых значений амплитуды сигнала через равные интервалы времени. По английски: Sampling См. также: Обработка сигналов Финансовый словарь Финам … Финансовый словарь
дискретизация — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN discretization … Справочник технического переводчика
дискретизация — дискретиз ация, и … Русский орфографический словарь
дискретизация — Преобразование, состоящее в замене непрерывного множества дискретным множеством … Политехнический терминологический толковый словарь
дискретизация с повышенной частотой — дискретизация с запасом по частоте избыточность при дискретизации метод снижения шумов квантования — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы … Справочник технического переводчика
дискретизация телеметрического сообщения — дискретизация Процесс преобразования телеметрического сообщения, описываемого функцией непрерывного времени, к виду, представляемому совокупностью координат. [ГОСТ 19619 74] Тематики телемеханика, телеметрия Синонимы дискретизация EN… … Справочник технического переводчика
дискретизация в значащие моменты времени — Дискретизация в моменты времени, в которых исходный сигнал изменяет свое состояние. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва, 2002] Тематики электросвязь,… … Справочник технического переводчика
дискретизация сигнала электросвязи но времени — Преобразование сигнала электросвязи, при котором сигнал представляется совокупностью его значений в дискретные моменты времени. [ГОСТ 22670 77] Тематики сети передачи данных Синонимы дискретизация EN sampling … Справочник технического переводчика
дискретизация по уровню — квантование количественная оценка — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы квантованиеколичественная оценка EN quantification … Справочник технического переводчика
Для того чтобы решить определенные задачи, человек вынужден преобразовывать имеющуюся информацию из одной формы, в которой она представлена, в другую. Например, при чтении книги вслух мы преобразовываем информацию из текстовой (дискретной) формы в звуковую (непрерывную). Тот, кто занимается транскрибацией, преобразовывает звуковую форму в текстовую — совершает обратный процесс.
Для того чтобы передавать, хранить, автоматически обрабатывать данные, гораздо удобнее использовать дискретную форму представления информации. В этом и состоит ее основное преимущество. Именно поэтому информатика — наука, на которой основана работа всей компьютерной техники, — много внимания уделяет дискретизации.
Дискретизация — процесс, с помощью которого непрерывная форма представления информации преобразуется в дискретную.иеие
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В информатике под понятием дискретности подразумевают алгоритм решения задачи, разбивающий весь процесс на определенное количество простых шагов (этапов), выполняемых поочередно.
Другими словами, дискретность — это набор действий, имеющих строго определенную, предписанную им алгоритмом последовательность. Каждое следующее действие может быть исполнено только при полном завершении предыдущего этапа.
Формы представления дискретной информации
Итак, существуют две формы представления информации:
Они принципиально отличаются в зависимости от своей природы.
Любой объект или явление, существующие в нашем мире, можно представить с помощью определенных физических величин и характеристик. Такое природное явление, как циклон, можно описать с помощью скорости ветра, температуры воздуха, количества выпавших осадков и другими характерными для циклона величинами.
Характерные физические величины для описания человека:
Все вышеуказанные физические величины имеют собственные определенные диапазоны. Количество значений, которые способна принимать та или иная величина, может быть бесконечным.
Подобные величины и ту информацию, которую они передают, принято называть непрерывными. Между значениями таких величин не бывает скачкообразных разрывов. Такая непрерывная величина, как масса тела, например, может принимать любые значения от нуля до бесконечности, включая дробные.
Кроме непрерывных величин, существуют и такие, которые обозначают целое, а не дробное количество: например, число музыкантов в оркестре или число атомов в молекуле вещества.
Если объект изучения обладает характерным свойством в какие-то моменты принимать строго конкретные значения (знаковые или числовые), то это свойство называют дискретной информацией об объекте.
Особенность дискретной информации — ее прерывистость, возможность пронумеровать и представить в цифровом виде с использованием логических нуля и единицы.
Дискретными значениями являются:
Для того чтобы обладать наиболее полными сведениями об объекте или явлении, чаще всего их описывают с помощью двух форм представления информации одновременно.
Геометрическую фигуру можно описать с помощью ее дискретного значения (квадрат) и непрерывного значения длины его стороны (15,25 см).
При использовании пружинных весов или весов со стрелкой измеряемая величина (масса) является сама по себе непрерывной. Но весы переводят этот показатель в дискретную форму в зависимости от того, к какому делению шкалы ближе окажется бегунок пружинных весов или стрелка.
В этом случае, чем более мелкие деления на шкале, тем более точной будет дискретное представление информации о массе взвешиваемого предмета.
Дискретную информацию принято представлять в символьном виде, с использованием знаков — натуральных чисел или букв. С помощью натуральных чисел можно представить деления на шкале измерительного прибора, нумерацию страниц книги или домов на улице города.
Цифровой вариант представления информации очень удобен для использования в ЭВМ.
В повседневной жизни для представления информации помимо цифр используют слова, составленные из букв какого-либо алфавита (русского, латинского, китайского и пр.). С помощью слов обозначают имена и свойства объектов, перечисляют действия.
Также широкое применение получили различные математические символы, знаки препинания.
Использование совокупности всех имеющихся символов, условно именуемой «алфавитом», дает возможность создания различных информационных объектов.
Такой вид представления информации называется символьным, так как она имеет дискретную природу, заключенную в использовании последовательности различных символов.
Существует большое количество «алфавитов» или систем письменности, с помощью которых можно передать (записать, сохранить) одну и ту же информацию различными символическими наборами.
В качестве примера поставим в соответствие каждой букве алфавита ее порядковый номер. В этом случае с помощью цифр от 0 до 9 можно записать текст целой книги.
Более того, ту же самую информацию можно закодировать с помощью двоичного кода, используя всего 2 символа — 0 и 1.
К дискретным формам представления информации относят также ее графическое изображение в виде различных чертежей, графиков, схем.
Информационные параметры сигнала
Дискретизация в системах обработки информации выглядит как обмен информацией, который происходит с помощью сигналов. Носителями таких сигналов выступают физические величины, которые могут быть представлены распределением сигналов в пространстве и времени.
Показатели соответствующих временных функций являются информационными параметрами сигнала. Среди таких показателей могут быть:
Как происходит дискретизация, основные этапы
По аналогии с видом представления информации сигналы классифицируют также на 2 типа:
В случае аналогового сигнала параметры внутри отдельных диапазонов могут принимать любые значения в любой момент времени.
В случае дискретного сигнала каждому установленному моменту времени соответствует определенное значение параметра. Дискретный сигнал описывает непрерывную информацию в виде точек графика, построенного в системе координат. В ней ось абсцисс представляет собой время сигнала в дискретном изображении, а ось ординат отражает дискретное представление уровня сигнала.
Преобразование аналогового сигнала в дискретный называется дискретизацией, которая происходит как по времени, так и по уровню сигнала.
Рассмотрим, как происходит дискретизация на примере самописцев атмосферного давления. Эти приборы работают на метеорологических станциях. Они в непрерывном режиме записывают изменение атмосферного давления на протяжении длительного времени в виде барограмм — кривых, вычерченных прибором в течение нескольких часов.
Одна из таких барограмм представлена ниже:
Взяв график за основу, можно снять с него необходимую нам информацию. Например, показания самописца в начале измерения атмосферного давления и каждый последующий час. Полученные данные заносятся в таблицу:
Таким образом, мы смогли преобразовать полученную в аналоговой (непрерывной) форме информацию в дискретный вид.
Если внимательно сравнить данные таблицы с данными графика, то можно заметить некоторую потерю точности. Так, самого большого значения давление достигло во время четвертого часа работы самописца, но в таблицу эта информация не попала.
Чтобы увеличить точность процесса дискретизации, следует брать меньшие временные интервалы. Например, снимать данные с барограммы не раз в час, а каждые полчаса или пятнадцать минут. В этом случае мы получим более точную картину изменения давления, представленную в дискретной форме.
Дискретные сигналы легче обрабатывать и хранить, чем аналоговые. Кроме того, на них практически не влияют помехи во время передачи на большие расстояния, что является их явным преимуществом. Поэтому использование дискретных сигналов получило более широкое распространение по сравнению с непрерывными.
Побочные эффекты дискретизации и квантования
Как мы уже выяснили, дискретизация происходит как по уровню (амплитуде) сигнала, так и по времени. При этом дискретизацию по уровню часто называют квантованием. В научной литературе могут встречаться оба термина, которые обозначают процесс оцифровки сигнала.
Поскольку все сигналы в природе имеют аналоговое происхождение, то для их хранения, обработки и передачи необходимо сначала оцифровывать сигналы — произвести с помощью аналого-цифровых приборов их дискретизацию и квантование по уровню.
После этого любой сигнал можно закодировать, провести его цифровую обработку, передать на расстоянии и хранить. При этом часто возникает необходимость преобразовать полученный цифровой сигнал обратно в аналоговый.
Подобным образом, например, происходит звуковое воспроизведение аудиозаписей с компакт-дисков. Цифровые сигналы, записанные в области высоких частот, преобразуются в низкочастотные звуковые.
Обратное преобразование сигнала происходит с определенной степенью точности, которая зависит от:
Следует учесть, что чем больше будет частота и число уровней, тем больше будет и цифровой информации, а значит, потребуется соответствующее количество ресурсов для ее передачи, хранения, обработки. Поэтому приходится соблюдать разумный компромисс между желаемой точностью воспроизведения сигнала и размерами обеспечивающих ее ресурсов.
Код ОГЭ: 1.1.3 Дискретная форма представления информации. Единицы измерения количества информации
Информация может быть представлена в аналоговой или дискретной форме. Величина в аналоговой форме может принимать бесконечное множество значений. Примерами аналогового представления информации могут служить звук скрипки, картина художника, показатели температуры воздуха, уровня воды в реке.
Величина в дискретной форме может принимать только конечное множество значений. Примеры дискретного представления информации: цифровые показания часов или спидометра, текст в книге, изображение на экране монитора.
Величину в аналоговой форме представления информации можно преобразовать в величину в дискретной форме. Этот процесс называется дискретизацией.
Способ представления информации с помощью кода из двух знаков оказался наиболее значимым для развития техники. Двоичные числа удобно хранить, обрабатывать и передавать с помощью электронных устройств. Основным носителем информации в них являются элементы, которые могут находиться в одном из двух состояний: включено/выключено, высокий/низкий уровень напряжения или тока, наличие/отсутствие намагниченности материалов. Условно одно состояние обозначают через 1, а другое через 0. Каждый такой элемент способен хранить один двоичный разряд, или бит информации.
Любое информационное сообщение представляется последовательностью нулей и единиц (цифрового кода). Этот метод представления информации называется двоичным кодированием. Таким образом, двоичный код является универсальным средством кодирования информации. Благодаря двоичному кодированию все действия по обработке сообщений компьютером сводятся к совокупности простых действий над 0 и 1.
Единицы измерения количества информации
Основной единицей хранения и обработки цифровой информации принят байт.
Соответственно, с помощью одного байта можно получить 256 (= 2 8 ) двоичных значений (от 00000000 до 11111111). В современных персональных компьютерах байт является наименьшей совокупностью битов, которую компьютер обрабатывает одномоментно.
На практике применяют более емкие, чем байт, единицы измерения объема сообщений и емкости носителей — килобайты, мегабайты, гигабайты, терабайты. Множителем при переходе к более емкой единице измерения выступает число 1024 (= 2 10 ).
Системы счисления
Система счисления — совокупность обозначений, приемов и правил для записи чисел цифровыми знаками. В зависимости от способов изображения чисел цифрами системы счисления делятся на непозиционные и позиционные.
Непозиционные системы счисления — такие, в которых количественное значение каждой цифры не зависит от занимаемой ею позиции в изображении числа.
Примером может служить египетская система счисления — в ней иероглифы (цифры), составляющие число, можно записывать сверху вниз, справа налево или вперемежку. Значение числа равно сумме значений цифр в его записи.
Переходной от непозиционных систем к позиционным служит римская система счисления. В ней позиция некоторых цифр уже меняет значение числа: например, в числе IX единицу нужно отнять от десяти, а в числе XI единицу нужно прибавить к десяти. Однако количественное значение самих цифр Х и I от их позиции не зависит.
В римской системе цифры записываются слева направо в порядке убывания, и тогда их значения складываются. Если слева записана меньшая цифра, а справа — большая, то их значения вычитаются. Нежелательно записывать более трех одинаковых цифр подряд.
Например, для представления числа 348 в римской системе счисления надо выписать сначала число сотен, затем десятков и единиц: 300 — ССС, 40 — ХL, 8 — VIII. Затем соединить эти записи: CCCXLVIII. Аналогично для числа 1977: 1 тысяча — М, 900 — СМ, 70 — LXХ, 7 — VII. Результат: MCMLXXVII.
В непозиционных системах очень трудно производить многие действия над числами, особенно умножение и деление, слишком громоздка запись для больших чисел. Поэтому широкое распространение получили позиционные системы счисления.
Позиционные системы счисления — такие, в которых количественное значение каждой цифры зависит от ее позиции в числе.
Количество знаков (цифр), используемых для изображения числа, называется основанием системы счисления (или мощностью алфавита). Систему с основанием 10 называют десятичной, с основанием 2 — двоичной, с основанием 16 — шестнадцатеричной, в общем случае: с основанием k — k-ичной.
Примером позиционной системы счисления является используемая нами арабская десятичная система счисления. Иногда ее называют индо-арабской, поскольку она была придумана в Индии, а стала известна в Европе из арабских трактатов. Алфавит этой системы составляют 10 цифр — от 0 до 9. Каждая цифра в числе при перемещении справа налево в следующий разряд увеличивает свое значение в 10 раз. Чтобы определить значение числа, надо сложить произведения каждой его цифры на 10 в степени, равной разряду этого числа.
Системы счисления могут иметь различные основания. Чтобы различать, в какой системе счисления записано число, принято указывать ее основание в виде нижнего индекса справа от числа. Сам индекс всегда представляется в десятичной системе. Для самой десятичной системы индекс указывают только тогда, когда используется какая–либо другая система:
316 — число в десятичной системе счисления, 3168 — число в восьмеричной системе счисления.
Свойства записи чисел в позиционной системе счисления:
Если основание системы k больше 10, то цифры старше 10 при записи обозначают прописными буквами латинского алфавита: A, B, …, Z. При этом цифре 10 соответствует знак A, цифре 11 — знак B и т. д.
Информация в компьютере представлена в цифровой двоичной форме. В целях экономичного отображения двоичную информацию можно представлять в шестнадцатеричном виде. В программировании часто используется восьмеричная запись чисел.
В общем виде число в позиционной системе счисления может быть представлено как последовательность символов алфавита (цифр), обозначенных через а1, а2, а3 и т. д. Для числа А с количеством целых разрядов n и количеством дробных разрядов m запись имеет вид:
Такая запись называется свернутой записью числа. Эту форму записи мы используем в повседневной жизни, поэтому ее называют также естественной.
Представление числа в виде многочлена называют развернутой записью числа:
Развернутая запись числа задает правило для вычисления числа по его цифрам в k–ичной системе счисления. Для уменьшения количества вычислений пользуются схемой Горнера, которая получается путем поочередного выноса основания системы k за скобки:
Конспект урока по информатике «Дискретная форма представления информации».