что такое диод как он устроен и почему может работать выпрямителем переменного тока
Принцип работы диода и сфера его применения
Диод – это прибор, состоящий из двух электродов с односторонней проводимостью. Их используют в выпрямителях электрического тока, в различной радиоаппаратуре, блоках питания и прочих электрооборудовании. В основе его работы лежит такое физическое явление, как полупроводимость. Они имеют самую различную мощность, а также могут быть объединены в диодные мосты, что повышает их эффективность.
Любой диод имеет катод и анод. На схемах эта радиодеталь обозначается в форме треугольника со стрелкой на катод. В данной статье будет рассмотрен принцип работы диода, как он работает, для чего служит и какую структуру он имеет. В качестве дополнения, статье имеет в себе два видеоролика и одну научно-популярную статья о диодах.
Что такое полупроводниковый диод – выпрямитель переменного тока
Диодами называют двухэлектродные приборы, обладающие односторонней проводимостью электрического тока. Это их основное свойство используют, например, в выпрямителях, где диоды преобразуют переменный ток электросети в ток постоянный для питания радиоаппаратуры, в приемниках — для детектирования модулированных колебаний высокой частоты, то есть преобразования их в колебания низкой (звуковой) частоты.
Наглядной иллюстрацией этого свойства диода может быть такой опыт. В цепь, составленную из батареи 3336Л и лампочки от карманного фонаря (3,5 В X 0,26 А), включи любой плоскостной диод, например, из серии Д226 или Д7, но так, чтобы анод диода, обозначаемый условно треугольником, был бы соединен непосредственно или через лампочку с положительным полюсом батареи, а катод, обозначаемый черточкой, к которой примыкает угол треугольника, с отрицательным полюсом батареи. Лампочка должна гореть.
Измени полярность включения батареи на обратную — лампочка гореть не будет. Если сопротивление диода измерять омметром, го в зависимости от того, как подключить его к зажимам прибора, омметр покажет различное сопротивление: в одном случае малое (единицы или десятки ом), в другом — очень большое (десятки и сотни килоом). Этим и подтверждается односторонняя проводимость диода.
У диода два электрода: катод — отрицательный и анод — положительный (рис. 13). Катодом служит пластинка германия, кремния или какого-либо другого полупроводника, обладающего электронной проводимостью, или сокращенно полупроводник n-типа (n — начальная буква латинского слова negativus — «отрицательный»), а анодом – часть объема этой же пластинки, но- с так называемой дырочной про-водимостью, или сокращенно полупроводник р-типа (р — начальная буква латинского слова positivus — «положительный»).
Между электродами образуется так называемый р-n переход — пограничная зона, хорошо проводящая ток от анода к катоду и плохо в обратном направлении (за направление тока принято направление, противоположное движению электронов). Диод может находиться в одном из двух состояний: открытом, то есть пропускном, либо закрытом, то есть непропускном. Диод бывает открыт, когда к нему приложено прямое напряжение Uпр, иначе, его анод соединен с плюсом источника напряжения, а катод — с минусом.
В этом случае сопротивление р-n перехода диода мало и через него течет прямой ток IПр, сила которого зависит от сопротивления нагрузки (в нашем опыте — лам-почка от карманного фонаря). При другой полярности питающего напряжения на р-n переход диода прикладывается обратное напряжение Uобр. В этом случае диод закрыт, его сопротивление велико и в цепи течет лишь незначительный обратный ток диода Iобр. О зависимости тока, проходящего через диод, от значения и полярности напряжения на его электродах лучше всего судить по вольтамперной характеристике диода, которую можно снять опытным путем.
Как работает диод
Можно физически сами диоды не видеть, но результат их действия окружает нас повсюду. Эти устройства позволяют управлять потоком тока в указанном направлении. Существует много различных вариантов исполнения диодов. В каких случаях это бывает необходимо? Ниже будут рассмотрены примеры и в некоторой степени принцип работы полупроводниковых диодов. Если добавить две металлические обкладки к P и N рабочим областям материала, то получатся электроды анод и катод. Схема подключения электродов к источнику может работать следующим образом:
Диоды и их разновидности
Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в “семейство” диодов входит не один десяток полупроводниковых приборов, носящих название “диод”. Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод – катод, один из которых обладает электропроводностью типа р, а другой – n.
Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощи насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью – это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький).
Внутреннее сопротивление диода (открытого) – величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом.
Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем – рассмотрим все поверхностно. В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и др. Треугольная часть является АНОД’ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются для защиты разных устройств от неправильной полярности включения и т. п.
Существует несколько основных видов диодов:
Схема выпрямления
Выпрямительные диоды присутствуют и в низковольтной части блока питания. Только схема включения состоит там не из 4-х диодов, а из двух. Внимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части?» Можно, но это будет не лучшее решение. В случае диодного моста ток проходит через нагрузку и два последовательно включенных диода.
В случае использования диодов 1N5408 общее падение напряжения на них может составить величину 1,8 В. Это очень немного по сравнению с сетевым напряжением 220 В. А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжениями +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.
К тому же, ток во вторичных цепях блока питания гораздо больше (в разы), чем в первичной. Следует отметить, для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.
Если потенциал верхнего конца вторичной обмотки трансформатора положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт. Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.
Что означает ВАХ диода?
ВАХ диода это просто напросто вольтамперная характеристика диода. Она описывает зависимость тока от напряжения прикладываемого к диоду. Давайте рассмотрим это обстоятельство чуток подробнее. Слева у нас показан вольтамперной характеристики для резистора. Как видите, зависимость тока от напряжения линейная, чем больше напряжение приложенное к резистору тем больше ток.
Для диода кривая зависимости явно отличается. Если мы подключим к аноду положительный потенциал, а к катоду отрицательный и будем плавно повышать напряжение то будет происходить следующее. Ток в начальный момент времени будет очень мал поэтому диод еще не будет открыт по полной. Но если мы будем прибавлять напряжение то это приведет к полному открытию диода.
Хорошо, а что же случится если мы подключим диод иначе? Положительный потенциал приложим к катоду, а отрицательный к аноду. В этом случае график ВАХ диода у нас буквально перевернется и картина будет следующая. При плавном повышении напряжения ток будет повышаться, но величина тока будет настолько незначительной, что им зачастую пренебрегают. Этот ток при обратном подключении называют еще током утечки.
Для чего используют диоды и как включать в цепь?
О том как функционирует диод мы поговорили, вот только пока непонятно как его можно применять и вообще для чего все это. Для начала рассмотрим простейший пример включения диода в электрическую цеп, причем в переменке. И для начала простой вопрос, зачем здесь резистор? Внимательный читатель посмотрит вольтамперную характеристику диода и все станет ясно. Ток в диоде без дополнительной нагрузке начнет очень быстро расти, возникнет подобие короткого замыкания от чего диоду может не поздоровиться. Дабы не произошло подобного конфуза применяют токоограничивающий резистор.
Свойство односторонней проводимости диода применяется не просто широко а повсеместно. В состав любого блока питания входят диоды как сами по себе так и в составе диодного моста. Ведь в любом блоке питания происходит один очень важный момент, а именно происходит превращение переменного тока в постоянный. А вот эту ответственную миссию берут на себя именно диоды. Полное превращение мы рассмотрим когда будем обсуждать диодные мосты, но как ведет себя диод в переменном токе мы сейчас увидим. Схема все та же что и была, диод и резистор включенные в цепь переменного тока.
Устройство и работа выпрямительного диода. Диодный мост.
18 Июн 2013г | Раздел: Радио для дома
Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
В этой части мы рассмотрим устройство и работу выпрямительных диодов.
Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.
Общие характеристики выпрямительных диодов.
В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:
малой мощности рассчитаны для выпрямления прямого тока до 300mA;
средней мощности – от 300mA до 10А;
большой мощности — более 10А.
По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.
Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.
Технология изготовления и конструкция выпрямительных диодов.
Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.
Технология изготовления таких диодов заключается в следующем:
на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.
Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.
Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.
Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).
Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.
У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).
Электрические параметры выпрямительных диодов.
У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:
Iобр – постоянный обратный ток, мкА;
Uпр – постоянное прямое напряжение, В;
Iпр max – максимально допустимый прямой ток, А;
Uобр max – максимально допустимое обратное напряжение, В;
Р max – максимально допустимая мощность, рассеиваемая на диоде;
Рабочая частота, кГц;
Рабочая температура, С.
Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.
Схема простого выпрямителя переменного тока на одном диоде.
Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:
На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD).
При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).
При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).
В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.
Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.
Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.
Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.
Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.
Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим.
В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.
Диодный мост.
Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.
Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «—» или «
», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.
Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.
На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.
Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.
Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку Rн, диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.
В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку Rн, диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.
В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.
И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:
1. Удвоилась частота пульсаций выпрямленного тока;
2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.
А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.
Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.
А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.
1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.