что такое динамическое выделение памяти в c

Динамическое выделение памяти

malloc

В предыдущей главе уже обсуждалось, что локальные переменные кладутся на стек и существую до тех пор, пока мы не вышли из функции. С одной стороны, это позволяет автоматически очищать память, с другой стороны, существует необходимость в переменных, время жизни которых мы можем контролировать самостоятельно. Кроме того, нам необходимо динамическое выделение памяти, когда размер используемого пространства заранее не известен. Для этого используется выделение памяти на куче. Недостатков у такого подхода два: во-первых, память необходимо вручную очищать, во-вторых, выдеение памяти – достаточно дорогостоящая операция.

Для выделения памяти на куче в си используется функция malloc (memory allocation) из библиотеки stdlib.h

Функция выделяет size байтов памяти и возвращает указатель на неё. Если память выделить не удалось, то функция возвращает NULL. Так как malloc возвращает указатель типа void, то его необходимо явно приводить к нужному нам типу. Например, создадим указатель, после этого выделим память размером в 100 байт.

После того, как мы поработали с памятью, необходимо освободить память функцией free.
Используя указатель, можно работать с выделенной памятью как с массивом. Пример: пользователь вводит число – размер массива, создаём массив этого размера и заполняем его квадратами чисел по порядку. После этого выводим и удаляем массив.

Здесь (int *) – приведение типов. Пишем такой же тип, как и у указателя.
size * sizeof(int) – сколько байт выделить. sizeof(int) – размер одного элемента массива.
После этого работаем с указателем точно также, как и с массивом. В конце не забываем удалять выделенную память.

Теперь представим на рисунке, что у нас происходило. Пусть мы ввели число 5.

Функция malloc выделила память на куче по определённому адресу, после чего вернула его. Теперь указатель p хранит этот адрес и может им пользоваться для работы. В принципе, он может пользоваться и любым другим адресом.
Когда функция malloc «выделяет память», то она резервирует место на куче и возвращает адрес этого участка. У нас будет гарантия, что компьютер не отдаст нашу память кому-то ещё. Когда мы вызываем функцию free, то мы освобождаем память, то есть говорим компьютеру, что эта память может быть использована кем-то другим. Он может использовать нашу память, а может и нет, но теперь у нас уже нет гарантии, что эта память наша. При этом сама переменная не зануляется, она продолжает хранить адрес, которым ранее пользовалась.

Это очень похоже на съём номера в отеле. Мы получаем дубликат ключа от номера, живём в нём, а потом сдаём комнату обратно. Но дубликат ключа у нас остаётся. Всегда можно зайти в этот номер, но в нём уже кто-то может жить. Так что наша обязанность – удалить дубликат.

Иногда думают, что происходит «создание» или «удаление» памяти. На самом деле происходит только перераспределение ресурсов.

Освобождение памяти с помощью free

Т еперь рассмотри, как происходит освобождение памяти. Переменная указатель хранит адрес области памяти, начиная с которого она может им пользоваться. Однако, она не хранит размера этой области. Откуда тогда функция free знает, сколько памяти необходимо освободить?

Работа с двумерными и многомерными массивами

Создадим «треугольный» массив и заполним его значениями

Чтобы создать трёхмерный массив, по аналогии, необходимо сначала определить указатель на указатель на указатель, после чего выделить память под массив указателей на указатель, после чего проинициализировать каждый из массивов и т.д.

calloc

Ф ункция calloc выделяет n объектов размером m и заполняет их нулями. Обычно она используется для выделения памяти под массивы. Синтаксис

realloc

Е щё одна важная функция – realloc (re-allocation). Она позволяет изменить размер ранее выделенной памяти и получает в качестве аргументов старый указатель и новый размер памяти в байтах:

Функция realloc может как использовать ранее выделенный участок памяти, так и новый. При этом не важно, меньше или больше новый размер – менеджер памяти сам решает, где выделять память.
Пример – пользователь вводит слова. Для начала выделяем под слова массив размером 10. Если пользователь ввёл больше слов, то изменяем его размер, чтобы хватило места. Когда пользователь вводит слово end, прекращаем ввод и выводим на печать все слова.

Хочу обратить внимание, что мы при выделении памяти пишем sizeof(char*), потому что размер указателя на char не равен одному байту, как размер переменной типа char.

Ошибки при выделении памяти

1. Бывает ситуация, при которой память не может быть выделена. В этом случае функция malloc (и calloc) возвращает NULL. Поэтому, перед выделением памяти необходимо обнулить указатель, а после выделения проверить, не равен ли он NULL. Так же ведёт себя и realloc. Когда мы используем функцию free проверять на NULL нет необходимости, так как согласно документации free(NULL) не производит никаких действий. Применительно к последнему примеру:

Хотелось бы добавить, что ошибки выделения памяти могут случиться, и просто выходить из приложения и выкидывать ошибку плохо. Решение зависит от ситуации. Например, если не хватает памяти, то можно подождать некоторое время и после этого опять попытаться выделить память, или использовать для временного хранения файл и переместить туда часть объектов. Или выполнить очистку, сократив используемую память и удалив ненужные объекты.

Таким образом, если указатель хранит адрес, то его не нужно изменять. Для работы лучше создать дополнительную переменную указатель, с которой работать дальше.

3. Использование освобождённой области. Почему это работает в си, описано выше. Эта ошибка выливается в другую – так называемые висячие указатели (dangling pointers или wild pointers). Вы удаляете объект, но при этом забываете изменить значение указателя на NULL. В итоге, он хранит адрес области памяти, которой уже нельзя воспользоваться, при этом проверить, валидная эта область или нет, у нас нет возможности.

Эта программа отработает и выведет мусор, или не мусор, или не выведет. Поведение не определено.

Если же мы напишем

то программа выкинет исключение. Это определённо лучше, чем неопределённое поведение. Если вы освобождаете память и используете указатель в дальнейшем, то обязательно обнулите его.

4. Освобождение освобождённой памяти. Пример

5. Одновременная работа с двумя указателями на одну область памяти. Пусть, например, у нас два указателя p1 и p2. Если под первый указатель была выделена память, то второй указатель может запросто скомпрометировать эту область:

Рассмотрим код ещё раз.

Теперь оба указателя хранят один адрес.

А вот здесь происходит непредвиденное. Мы решили выделить под p2 новый участок памяти. realloc гарантирует сохранение контента, но вот сам указатель p1 может перестать быть валидным. Есть разные ситуации. Во-первых, вызов malloc мог выделить много памяти, часть которой не используется. После вызова ничего не поменяется и p1 продолжит оставаться валидным. Если же потребовалось перемещение объекта, то p1 может указывать на невалидный адрес (именно это с большой вероятностью и произойдёт в нашем случае). Тогда p1 выведет мусор (или же произойдёт ошибка, если p1 полезет в недоступную память), в то время как p2 выведет старое содержимое p1. В этом случае поведение не определено.

Два указателя на одну область памяти это вообще-то не ошибка. Бывают ситуации, когда без них не обойтись. Но это очередное минное поле для программиста.

Различные аргументы realloc и malloc.

При вызове функции malloc, realloc и calloc с нулевым размером поведение не определено. Это значит, что может быть возвращён как NULL, так и реальный адрес. Им можно пользоваться, но к нему нельзя применять операцию разадресации.
Вызов realloc(NULL, size_t) эквиваленте вызову malloc(size_t).
Однако, вызов realloc(NULL, 0) не эквивалентен вызову malloc(0) 🙂 Понимайте это, как хотите.

Примеры

Пусть есть ряд
1, 4, 4, 6, 7, 8, 9, 11, 12, 11, 15
Тогда если период среднего будет 3, то мы получим ряд
(1+4+4)/3, (4+4+6)/3, (4+6+7)/3, (6+7+8)/3, (7+8+9)/3, (8+9+11)/3, (9+11+12)/3, (11+12+11)/3, (12+11+15)/3
Видно, что сумма находится в «окне», которое скользит по ряду. Вместо того, чтобы каждый раз в цикле находить сумму, можно найти её для первого периода, а затем вычитать из суммы крайнее левое значение предыдущего периода и прибавлять крайнее правое значение следующего.
Будем запрашивать у пользователя числа и период, а затем создадим новый массив и заполним его средними значениями.

Это простой пример. Большая его часть связана со считыванием данных, вычисление среднего всего в девяти строчках.

3. Бином Ньютона. Создадим треугольную матрицу и заполним биномиальными коэффициентами

Если Вы желаете изучать этот материал с преподавателем, советую обратиться к репетитору по информатике

Источник

Динамическое распределение памяти C: как работает динамическая память

что такое динамическое выделение памяти в c. Смотреть фото что такое динамическое выделение памяти в c. Смотреть картинку что такое динамическое выделение памяти в c. Картинка про что такое динамическое выделение памяти в c. Фото что такое динамическое выделение памяти в c

В язык е программирования С можно реализовать три основных способа выделения памяти:

Динамическое выделение памяти в С

Об автоматическом и статическом распределении памяти мы обязательно поговорим в наших следующих статьях, а пока давайте разберемся, что такое динамическое выделение памяти в Си и как оно функционирует.

Статическое и автоматическое выделение памяти имеет 2 общих свойства:

В основной массе компонентов программы этих свойств достаточно, чтобы управлять памятью. Однако проблемы начинаются, когда в программе нужно реализовать пользовательский ввод каких-либо сведений. В этом случае никогда точно не известно, какое количество памяти может понадобиться, пока пользователь не введет какое-либо значение.

Динамическое выделение памяти в С как раз решает подобные проблемы с памятью. Потому что динамическое выделение памяти в Си дает возможность работающим программам давать представление на необходимое количество памяти непосредственно в операционную систему. Такая память не ограничивается количеством стековой памяти, которая сама по себе очень часто сильно ограничена несколькими мегабайтами. Динамическая память «черпается» из памяти, которой управляет операционная, а там уже счет идет на гигабайты.

Как работает динамическое выделение памяти

Когда происходит динамическое выделение памяти, мы фактически «просим» операционную систему воспользоваться свободной областью памяти для нужд нашего программного продукта. Когда «операционка» соглашается с нашей «просьбой», то в ответ выдает адрес выделенной памяти для нужд нашего программного обеспечения. С этого момента наша программа сможет пользоваться выделенной памятью по своему усмотрению. Когда программа завершает свою работу, она «передает» эту память обратно под управление операционной системе.

Как реализовать динамическое выделение памяти в С

Динамическое выделение памяти в С может быть реализовано следующими функциями:

1. malloc(). Общая формула реализации:

#include /* или #include */

void *malloc(size_t size);

2. calloc(). Общая формула реализации:

#include /* или #include */

void *calloc(size_t count, size_t elem_size);

3. realloc(). Общая формула реализации:

#include /* или #include */

void *realloc(void *memory, size_t newSize);

4. free(). Общая формула реализации:

#include /* или #include */

void free(void *memory).

Также динамическое выделение памяти в С можно реализовать при помощи оператора «new»:

int *p = new int; // Здесь не задается начальное значение памяти

int *p = new int(10); // Здесь задается начальное значение памяти

Заключение

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Источник

Динамическое выделение памяти в C++

С++ использует новые методы работы с динамической памятью при помощи операторов new и delete :

Оператор new используется в следующих формах:

Память может быть распределена для одного объекта или для массива любого типа, в том числе типа, определенного пользователем. Результатом выполнения операции new будет указатель на отведенную память, или исключение std::bad_alloc в случае ошибки.

Освобождение памяти связано с тем, как выделялась память – для одного элемента или для нескольких. В соответствии с этим существует и две формы применения delete :

Например, для приведенного выше случая, освободить память необходимо следующим образом:

Результат выполнения
что такое динамическое выделение памяти в c. Смотреть фото что такое динамическое выделение памяти в c. Смотреть картинку что такое динамическое выделение памяти в c. Картинка про что такое динамическое выделение памяти в c. Фото что такое динамическое выделение памяти в c

Пример неудачного выделения памяти (в случае очень большого требуемого объема):

Комментариев к записи: 30

Возводить в степень можно гораздо быстрее, чем за n умножений! Для этого нужно воспользоваться следующими рекуррентными соотношениями: an = (a2)n/2 при четном n, an = a × an−1 при нечетном n. Реализуйте алгоритм быстрого возведения в степень с помощью рекурсивной функции. Формат входных данных Вводятся действительное число a и целое неотрицательное число n. Формат выходных данных

Дано число N. Определите, сколькими способами можно расставить на доске N×N N ферзей, не бьющих друг друга.

#include
#include
char *resize( const char *str, unsigned size, unsigned new_size);
char *getline();
using namespace std;

#include
#include
#define ESC 27
#define EOS ‘\n’
using namespace std;

typedef struct <
float **matrix;
unsigned int volume;
char name;
>matrix;

Источник

BestProg

Содержание

Поиск на других ресурсах:

1. Динамическое и статическое (фиксированное) выделение памяти. Главные различия

Для работы с массивами информации, программы должны выделять память для этих массивов. Для выделения памяти под массивы переменных используются соответствующие операторы, функции и т.п.. В языке программирования C++ выделяют следующие способы выделения памяти:

1. Статическое (фиксированное) выделение памяти. В этом случае память выделяется только один раз во время компиляции. Размер выделенной памяти есть фиксированным и неизменным до конца выполнения программы. Примером такого выделения может служить объявление массива из 10 целых чисел:

2. Преимущества и недостатки использования динамического и статического способов выделения памяти

Динамическое выделение памяти по сравнению со статическим выделением памяти дает следующие преимущества:

Преимущества статического способа выделения памяти:

В зависимости от поставленной задачи, программист должен уметь правильно определить, какой способ выделения памяти подходит для той или другой переменной (массива).

3. Как выделить память оператором new для одиночной переменной? Общая форма.

Общая форма выделения памяти для одиночной переменной оператором new имеет следующий вид:

В языках программирования Java, C# освобождать память после выделения не нужно. Этим занимается «сборщик мусора» ( garbage collector ).

Общая форма оператора delete для одиночной переменной:

5. Примеры выделения ( new ) и освобождения ( delete ) памяти для указателей базовых типов

Пример 2. Указатель на тип double

6. Что такое «утечка памяти» ( memory leak )?

«Утечка памяти» есть типичной ошибкой программиста. Если «утечка памяти» повторяется многократно, то возможная ситуация, когда будет «занята» вся доступная память в компьютере. Это приведет к непредсказуемым последствиям работы операционной системы.

При использовании оператора new возможна ситуация, когда память не выделится. Память может не выделиться в следующих ситуациях:

8. Выделение памяти для переменной с одновременной инициализацией. Общая форма. Пример

Оператор выделения памяти new для одиночной переменной допускает одновременную инициализацию значением этой переменной.

В общем, выделение памяти для переменной с одновременной инициализацией имеет вид

Пример. Выделение памяти для переменных с одновременной инициализацией. Ниже приводится функция main() для консольного приложения. Продемонстрировано выделение памяти с одновременной инициализацией. Также учитывается ситуация, когда попытка выделить память завершается неудачей (критическая ситуация bad_alloc ).

Источник

Урок №85. Динамическое выделение памяти

Обновл. 13 Сен 2021 |

Язык С++ поддерживает три основных типа выделения (или «распределения») памяти, с двумя из которых, мы уже знакомы:

Статическое выделение памяти выполняется для статических и глобальных переменных. Память выделяется один раз (при запуске программы) и сохраняется на протяжении работы всей программы.

Автоматическое выделение памяти выполняется для параметров функции и локальных переменных. Память выделяется при входе в блок, в котором находятся эти переменные, и удаляется при выходе из него.

Динамическое выделение памяти является темой этого урока.

Динамическое выделение переменных

Как статическое, так и автоматическое распределение памяти имеют два общих свойства:

Размер переменной/массива должен быть известен во время компиляции.

Выделение и освобождение памяти происходит автоматически (когда переменная создается/уничтожается).

В большинстве случаев с этим всё ОК. Однако, когда дело доходит до работы с пользовательским вводом, то эти ограничения могут привести к проблемам.

Если нам нужно объявить размер всех переменных во время компиляции, то самое лучшее, что мы можем сделать — это попытаться угадать их максимальный размер, надеясь, что этого будет достаточно:

Это плохое решение, по крайней мере, по трем причинам:

Во-первых, теряется память, если переменные фактически не используются или используются, но не все. Например, если мы выделим 30 символов для каждого имени, но имена в среднем будут занимать по 15 символов, то потребление памяти получится в два раза больше, чем нам нужно на самом деле. Или рассмотрим массив rendering : если он использует только 20 000 полигонов, то память для других 20 000 полигонов фактически тратится впустую (т.е. не используется)!

Во-вторых, память для большинства обычных переменных (включая фиксированные массивы) выделяется из специального резервуара памяти — стека. Объем памяти стека в программе, как правило, невелик: в Visual Studio он по умолчанию равен 1МБ. Если вы превысите это значение, то произойдет переполнение стека, и операционная система автоматически завершит выполнение вашей программы.

В Visual Studio это можно проверить, запустив следующий фрагмент кода:

Лимит в 1МБ памяти может быть проблематичным для многих программ, особенно где используется графика.

В-третьих, и самое главное, это может привести к искусственным ограничениям и/или переполнению массива. Что произойдет, если пользователь попытается прочесть 500 записей с диска, но мы выделили память максимум для 400? Либо мы выведем пользователю ошибку, что максимальное количество записей — 400, либо (в худшем случае) выполнится переполнение массива и затем что-то очень нехорошее.

К счастью, эти проблемы легко устраняются с помощью динамического выделения памяти. Динамическое выделение памяти — это способ запроса памяти из операционной системы запущенными программами по мере необходимости. Эта память не выделяется из ограниченной памяти стека программы, а выделяется из гораздо большего хранилища, управляемого операционной системой — кучи. На современных компьютерах размер кучи может составлять гигабайты памяти.

Для динамического выделения памяти одной переменной используется оператор new:

В примере, приведенном выше, мы запрашиваем выделение памяти для целочисленной переменной из операционной системы. Оператор new возвращает указатель, содержащий адрес выделенной памяти.

Для доступа к выделенной памяти создается указатель:

Затем мы можем разыменовать указатель для получения значения:

Вот один из случаев, когда указатели полезны. Без указателя с адресом на только что выделенную память у нас не было бы способа получить доступ к ней.

Как работает динамическое выделение памяти?

На вашем компьютере имеется память (возможно, большая её часть), которая доступна для использования программами. При запуске программы ваша операционная система загружает эту программу в некоторую часть этой памяти. И эта память, используемая вашей программой, разделена на несколько частей, каждая из которых выполняет определенную задачу. Одна часть содержит ваш код, другая используется для выполнения обычных операций (отслеживание вызываемых функций, создание и уничтожение глобальных и локальных переменных и т.д.). Мы поговорим об этом чуть позже. Тем не менее, большая часть доступной памяти компьютера просто находится в ожидании запросов на выделение от программ.

Когда вы динамически выделяете память, то вы просите операционную систему зарезервировать часть этой памяти для использования вашей программой. Если ОС может выполнить этот запрос, то возвращается адрес этой памяти обратно в вашу программу. С этого момента и в дальнейшем ваша программа сможет использовать эту память, как только пожелает. Когда вы уже выполнили с этой памятью всё, что было необходимо, то её нужно вернуть обратно в операционную систему, для распределения между другими запросами.

В отличие от статического или автоматического выделения памяти, программа самостоятельно отвечает за запрос и обратный возврат динамически выделенной памяти.

Освобождение памяти

Когда вы динамически выделяете переменную, то вы также можете её инициализировать посредством прямой инициализации или uniform-инициализации (в С++11):

Когда уже всё, что требовалось, выполнено с динамически выделенной переменной — нужно явно указать для С++ освободить эту память. Для переменных это выполняется с помощью оператора delete:

Оператор delete на самом деле ничего не удаляет. Он просто возвращает память, которая была выделена ранее, обратно в операционную систему. Затем операционная система может переназначить эту память другому приложению (или этому же снова).

Хотя может показаться, что мы удаляем переменную, но это не так! Переменная-указатель по-прежнему имеет ту же область видимости, что и раньше, и ей можно присвоить новое значение, как и любой другой переменной.

Обратите внимание, удаление указателя, не указывающего на динамически выделенную память, может привести к проблемам.

Висячие указатели

Язык C++ не предоставляет никаких гарантий относительно того, что произойдет с содержимым освобожденной памяти или со значением удаляемого указателя. В большинстве случаев, память, возвращаемая операционной системе, будет содержать те же значения, которые были у нее до освобождения, а указатель так и останется указывать на только что освобожденную (удаленную) память.

Указатель, указывающий на освобожденную память, называется висячим указателем. Разыменование или удаление висячего указателя приведет к неожиданным результатам. Рассмотрим следующую программу:

Процесс освобождения памяти может также привести и к созданию нескольких висячих указателей. Рассмотрим следующий пример:

Есть несколько рекомендаций, которые могут здесь помочь:

Во-первых, старайтесь избегать ситуаций, когда несколько указателей указывают на одну и ту же часть выделенной памяти. Если это невозможно, то выясните, какой указатель из всех «владеет» памятью (и отвечает за её удаление), а какие указатели просто получают доступ к ней.

Во-вторых, когда вы удаляете указатель, и, если он не выходит из области видимости сразу же после удаления, то его нужно сделать нулевым, т.е. присвоить значение 0 (или nullptr в С++11). Под «выходом из области видимости сразу же после удаления» имеется в виду, что вы удаляете указатель в самом конце блока, в котором он объявлен.

Правило: Присваивайте удаленным указателям значение 0 (или nullptr в C++11), если они не выходят из области видимости сразу же после удаления.

Оператор new

При запросе памяти из операционной системы в редких случаях она может быть не выделена (т.е. её может и не быть в наличии).

Во многих случаях процесс генерации исключения оператором new (как и сбой программы) нежелателен, поэтому есть альтернативная форма оператора new, которая возвращает нулевой указатель, если память не может быть выделена. Нужно просто добавить константу std::nothrow между ключевым словом new и типом данных:

В примере, приведенном выше, если оператор new не возвратит указатель с динамически выделенной памятью, то возвратится нулевой указатель.

Разыменовывать его также не рекомендуется, так как это приведет к неожиданным результатам (скорее всего, к сбою в программе). Поэтому наилучшей практикой является проверка всех запросов на выделение памяти для обеспечения того, что эти запросы будут выполнены успешно и память выделится:

Поскольку не выделение памяти оператором new происходит крайне редко, то обычно программисты забывают выполнять эту проверку!

Нулевые указатели и динамическое выделение памяти

Нулевые указатели (указатели со значением 0 или nullptr ) особенно полезны в процессе динамического выделения памяти. Их наличие как бы сообщаем нам: «Этому указателю не выделено никакой памяти». А это, в свою очередь, можно использовать для выполнения условного выделения памяти:

Удаление нулевого указателя ни на что не влияет. Таким образом, в следующем нет необходимости:

Вместо этого вы можете просто написать:

Если ptr не является нулевым, то динамически выделенная переменная будет удалена. Если значением указателя является нуль, то ничего не произойдет.

Утечка памяти

Динамически выделенная память не имеет области видимости, т.е. она остается выделенной до тех пор, пока не будет явно освобождена или пока ваша программа не завершит свое выполнение (и операционная система очистит все буфера памяти самостоятельно). Однако указатели, используемые для хранения динамически выделенных адресов памяти, следуют правилам области видимости обычных переменных. Это несоответствие может вызвать интересное поведение, например:

Здесь мы динамически выделяем целочисленную переменную, но никогда не освобождаем память через использование оператора delete. Поскольку указатели следуют всем тем же правилам, что и обычные переменные, то, когда функция завершит свое выполнение, ptr выйдет из области видимости. Поскольку ptr — это единственная переменная, хранящая адрес динамически выделенной целочисленной переменной, то, когда ptr уничтожится, больше не останется указателей на динамически выделенную память. Это означает, что программа «потеряет» адрес динамически выделенной памяти. И в результате эту динамически выделенную целочисленную переменную нельзя будет удалить.

Это называется утечкой памяти. Утечка памяти происходит, когда ваша программа теряет адрес некоторой динамически выделенной части памяти (например, переменной или массива), прежде чем вернуть её обратно в операционную систему. Когда это происходит, то программа уже не может удалить эту динамически выделенную память, поскольку больше не знает, где выделенная память находится. Операционная система также не может использовать эту память, поскольку считается, что она по-прежнему используется вашей программой.

Утечки памяти «съедают» свободную память во время выполнения программы, уменьшая количество доступной памяти не только для этой программы, но и для других программ также. Программы с серьезными проблемами с утечкой памяти могут «съесть» всю доступную память, в результате чего ваш компьютер будет медленнее работать или даже произойдет сбой. Только после того, как выполнение вашей программы завершится, операционная система сможет очистить и вернуть всю память, которая «утекла».

Хотя утечка памяти может возникнуть и из-за того, что указатель выходит из области видимости, возможны и другие способы, которые могут привести к утечкам памяти. Например, если указателю, хранящему адрес динамически выделенной памяти, присвоить другое значение:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *