что такое дезактивированный вирус

Что такое дезактивированный вирус

В промышленное производство вирусных препаратов с нарастающей скоростью вовлекаются все новые и новые вирусные агенты. Подавляющее большинство новых объектов относится к классу так называемых «оболочечных вирусов». Наблюдается тенденция быстрого сокращения периода между открытием очередного возбудителя и организацией лабораторных и промышленных производств инактивированных препаратов.

Требования по безопасности ужесточаются в связи с необходимостью во многих случаях приготовления концентратов вирусных антигенов. Следует отметить, что инактивация должна быть не только эффективной, но и максимально щадящей (селективной). Иными словами, сопутствующие изменения в структуре вирусных частиц и их компонентов должны быть минимальными. Однако механизм инактивирующих воздействий во многих отношениях недостаточно выяснен и их использование зачастую носит эмпирический характер.

Так как вирионы в центре агрегатов, образованных клеточными и сывороточными компонентами, могут быть защищены от инактивации, разрушение и удаление агрегатов различными методами очистки вирусной суспензии является важным этапом перед инактивацией. При изготовлении цельновирионных не-реплицирующихся вакцин используют химические и физические методы инактивации вирусов.

Химические методы инактивации вирусов

Из химических соединений наиболее часто используют два главных типа инактиваторов: ретикулирующие (разрыхляющие) агенты и алкилирующие агенты.
К ретикулирующим агентам относятся альдегиды, в том числе формальдегид, глютаральдегид и глицидальдегид, из которых наиболее часто используют формальдегид. К алкирующим агентам относятся бетапропиолактон, этиленимин и другие азиридины.

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Механизм действия инактивирующих агентов, вероятно, заключается в следующем: 1) взаимодействуя с нуклеиновыми кислотами, они делают невозможной их репликацию; 2) вызывают ретикуляцию белков.

Механизм действия инактивирующих агентов лучше изучен применительно к белкам, чем к нуклеиновым кислотам, хотя в целом остается не полностью выясненным. Инактивация вирусов, кажется, основывается на двойном действии ретикуляции белков, взаимодействующих с клеточными рецепторами, и блокаде репликации нуклеиновых кислот. Необходимая концентрация инактивирующих агентов зависит, главным образом, от относительной концентрации белков и нуклеиновых кислот в инактивируемой среде. Температура и гомогенность инактивируемого субстрата также играют ключевую роль в кинетике инактивации вируса.

Возможность обратимости изменений реактивных групп (аминогруппа лизина, фенольные ядра тирозина) необходимо учитывать, особенно в случае использования формальдегида.
Полнота инактивации вируса должна определяться сразу после изготовления вакцины.

Наиболее общепринятыми инактивирующими агентами являются формальдегид, бета-пропиолактон и этиленимин. Одним из преимуществ бета-пропиолактона, используемого для изготовления вакцины против бешенства, и этиленимина, применяемого в изготовлении вакцины против ящура, является то, что они полностью гидролизуются в течение нескольких часов с образованием нетоксичных продуктов.

Формальдегид инактивирует вирусы благодаря высокой реакционной способности в отношении белков и нуклеиновых кислот. Он вступает в соединение не только с вирусными частицами, но и с многочисленными компонентами среды, в которую его добавляют.

Механизм инактивации вирусов формальдегидом сложен и характеризуется двумя типами реакций. Взаимодействие формальдегида с нуклеиновой кислотой и белками вируса протекает, соответственно, по типу реакции первого и второго порядка. Наиболее существенна для инактивации первая, которая, однако, в значительной мере зависит от второй.

Взаимодействуя с нуклеиновыми кислотами и белками, формальдегид реагирует в основном с аминогруппами. Присоединение формальдегида к аминогруппам пуринов и пиримидинов уничтожает матричную и информационную активность нуклеиновых кислот.

Формальдегид с большей скоростью взаимодействует с аминогруппами аминокислот и белков с образованием метилольных производных, чем с азотистыми основаниями нуклеиновых кислот. Сложилось представление, что с белками и нуклеиновыми кислотами вирусов формальдегид реагирует в две стадии. Вначале, в результате взаимодействия формальдегида с амино- или иминогруппами, быстро образуются весьма нестабильные метилольные производные, а затем, в результате вторичных реакций — бисметиленовые производные.

Продукты взаимодействия формальдегида с аминокислотами способны вступать в реакцию с нуклеиновыми кислотами значительно быстрее, чем сам формальдегид.

Во второй стадии происходит медленное взаимодействие первичных продуктов реакции с другими группами белков, в результате чего образуются ковалентно связанные димеры полипептидов. При этом уплотняется белковая оболочка и уменьшается ее проницаемость. Вследствие этого снижается скорость инактивации вируса. Под влиянием формальдегида в вирионах клещевого энцефалита образовывались гликопротеиновые димеры и комплекс РНК с белками нуклеокапсида. Последний отличался высокой стабильностью и разрушался только РНКазой. Предполагается, что образование этого комплекса — основной механизм инактивации вируса. Гликопротеин, экстрагированный из инактивированного вируса, обладал нормальной антигенной и иммуногенной активностью.

Следует отметить, что реакция формальдегида с аминогруппами обратима, то есть при удалении избытка реагента или разбавлении раствора активность нуклеиновой кислоты может быть восстановлена. Процесс взаимодействия вируса с формальдегидом зависит от таких факторов, как концентрация реагента, температура, рН среды.

При оптимальных условиях инактивации взаимодействие формальдегида с белками многих вирусов не оказывает значительного влияния на их антигенные свойства. Однако ряд вирусов теряет значительную часть антигенной активности при инактивации формалином. Это особенно касается оболочечных вирусов и, прежде всего, вирусов кори и респираторно-синцитиального (PC) вируса. Например, инактивирован-ная формалином вакцина против PC-вируса вызывала образование антител к белку F, которые не подавляли его инфекционную и симпластообразующую активность. Более того, вакцинация приводила к осложнению течения болезни при последующем ее возникновении. Вероятно, под действием формалина изменяются эпитопы гликопротеина, ответственные за индукцию вируснейтрализующих антител.

Это касается, прежде всего, поверхностного F белка, ответственного за протективный иммунитет. Однако многие из вирусов, которые относительно хорошо переносят инактивацию формалином, оказываются весьма чувствительными к изменениям ее условий. Повышение концентрации формальдегида в десять и более раз по сравнению с оптимальной (0,1%-ной) приводило к морфологическим изменениям поверхностного антигена вируса гепатита В и снижению его активности, а увеличение продолжительности обработки очищенного полиовируса сопровождалось значительным повреждением капсида некоторых вирионов. С целью смягчения повреждающего действия формальдегида на антигенность и иммуногенность вирусов стали применять стабилизирующие вещества. Установлено, например, что добавление арилдона (5,4 М) не влияет на инактивацию аттенуированных и вирулентных штаммов полиовируса формалином (1:4000, 37°С) и, в то же время, способствует сохранению иммуногенности за счет стабилизации D-антигена.

Источник

Что такое дезактивированный вирус

Химическая инактивация вирионов технически проста. Однако надежное подавление инфекционности нередко сопровождается существенным снижением других видов биологической активности, в том числе иммуногенности. К тому же, в ряде случаев требуется нейтрализация инактивирующих агентов.

Можно сказать, что все инактивирующие агенты в той или иной степени вызывают изменения как в нуклеиновой кислоте, так и в белковой оболочке. При этом характер изменений вирусных частиц во многом определяется природой инактивирующего агента и возбудителя.

Приготовление эффективных инактивированных вакцин из некоторых оболочечных вирусов (вирус кори, респираторно-синцитиальный и др.) оказалось трудной задачей, поскольку все оболочечные вирусы имеют сложную липопротеиновую оболочку (липидный бислой с встроенными белками), наружные белки которой играют основную роль в индукции протективного иммунитета и часто денатурируются в процессе инактивации и последующего хранения.

Изучение воздействия химических инактиваторов на эпитопы гликопротеинов вируса лихорадки долины Рифт показало, что вскоре после начального периода инактивации этиленимин мало действует на эпитопы. Бета-пропиолактон в значительной мере изменяет структуру семи эпитопов, а формальдегид частично воздействует на конфирмационную структуру большинства из них. Эпитопы всех инактивированных антигенов отличаются сниженной способностью реагировать со специфическими моноклональными антителами в случае хранения их более 6 мес.

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Опытным путем на различных вирусах установлено, что при щадящих условиях инактивации, как правило, вначале теряется инфекционность, а затем антигенность. Считается, что чем больше разница во времени между утратой этих свойств, тем перспективнее режим инактивации данного вируса.

Изучение механизма взаимодействия инактивирующих факторов с нуклеиновыми кислотами и белками вирусов, а также выяснение структурных и функциональных модификаций этих макромолекул поможет сделать выбор оптимальных условий инактивации вирусов с учетом их групповых и индивидуальных особенностей.

Первым реагентом для изготовления многих вирусных инактивированных вакцин был формальдегид. Около 50 лет назад была предложена инактивированная формалином сорбированная вакцина против ящура, технологию изготовления которой совершенствовали в течение многих лет. На ранних этапах широкого применения такой вакцины имели место случаи неполного обезвреживания вируса ящура, что нередко приводило к вспышкам заболевания в европейских странах. Все это создало необходимость изыскать новые методы инактивации, обеспечивающие полную потерю инфекционных свойств вируса без снижения его антигенности, в результате чего предпочтение было отдано ацетилэтиленимину.

Однако в последнее время представлены новые доказательства в пользу пригодности формальдегида для приготовления безопасной противоящурной вакцины. Этому способствовало использование фильтрованной вирусной суспензии, инактивация вируса перед добавлением ГОА и соблюдение общепринятого режима инактивации (0,04% формалина; рН 8,5; 25°С). Исключение адсорбации вируса перед добавлением формалина значительно облегчает контроль кинетики инактивации вируса, а также позволяет проводить очистку и концентрирование инактивированного вирусного антигена. При длительном хранении иммуногенность формолвакцины была выше, чем вакцины, инактивированной АЭИ. Сохранность полных вирионов (146S-частиц) через 1 год (4°С) после инактивации формальдегидом глицилальдегидом и бета-пропионлоктоном соответственно составляла 30—50%, 80—90% и 10—20%.

Д. Солк и сотрудники, используя культуральный вирус и формалин, впервые в истории профилактики полиомиелита получили безопасную инактивированную вакцину. Фильтрованный вирус инактивировали формалином (1:4000; 37°С; рН 7,0; 12 суток). В дальнейшем, инактивированная формалином трехвалентная вакцина против полиомиелита повышенной активности была приготовлена в институте Мерье (Франция) из вируса, выращенного в культуре клеток Vera на микроносителе.

Вакцина против болезни Тешена, инактивированная бета-пропиолактоном, оказалась более иммуногенной, чем формолвакцина, полученная аналогичным образом, тогда как другие исследователи при создании инактивированных вакцин против африканской чумы лошадей и болезни Тешена отдавали предпочтение формалину.

Вирус африканской чумы лошадей инактивировали бета-пропиолактоном (30 мин, 25°С) или формалином (48 ч, 25°С). Иммуногенная активность обоих антигенов, сорбированных на гидрате окиси алюминия, была одинаковой. Бета-пропиолактон оказался эффективным средством при изготовлении инактивированных вакцин против ныокаслской болезни и везикулярной болезни свиней.

Вирус гепатита А, адаптированный к культуре клеток человека, концентрировали преципитацией сульфатом аммония и инактивировали бета-пропиолактоном. Вакцина обладала выраженной антигенностью, вызывая длительную персистенцию антител у вакцинированных животных. Другие авторы при изготовлении вакцины против гепатита А вирус выращивали в культуре диплоидных клеток человека MRC-5. Очищенный и концентрированный вирус инактивировали формальдегидом, консервировали 2-феноксиэтанолом, а в качестве адъюванта добавляли ГОА. Одна доза (1 мл) вакцины, содержащая 720 ед. (ИФА) вирусного антигена, вызывала практически 100%-ную сероконверсию у взрослых, а после бустеризации обеспечивала защиту сроком не менее 10 лет. Аналогичная вакцина при испытании на обезьянах и морских свинках обладала выраженной антигенностью и иммуногенностью.

Другой аналогичной лицензированной вакциной является вакцина VAQTA. Очищенный концентрированный частично аттенуированный вирус инактивировали формальдегидом и сорбировали на гидрате окиси алюминия. У вакцинированных шимпанзе в течение 2 недель развивались ВНА и они были защищены от внутривенного заражения вирулентным вирусом гепатита А. Обе инактивированные вакцины были безопасны и иммуногены для людей.

Инактивированную сорбированную вакцину против кори применяли трехкратно. Иммунизация сопровождалась образованием различного уровня нейтрализующих антител и антител, подавляющих ГА. Вакцинированные пациенты были защищены от заболевания в течение нескольких месяцев после иммунизации. Титр антител быстро снижался и они вновь становились чувствительными к естественному заражению.

Источник

Крохотные курьеры: как аденоассоциированные вирусы спасают жизни

Крохотные курьеры: как аденоассоциированные вирусы спасают жизни

Авторы
Редакторы

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Конкурс «Био/Мол/Текст»-2020/2021

Эта работа опубликована в номинации «Вирусы и микроорганизмы» конкурса «Био/Мол/Текст»-2020/2021.

Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Введение

Эта история началась в середине 1960-х, когда в препаратах аденовируса обезьян случайно было обнаружено загрязнение из маленьких неизвестных частиц [1]. Эти частицы были впоследствии названы аденоассоциированным вирусом (сокращенно ААВ, англ. adeno-associated virus, AAV). Тогда мало кто мог предположить, что именно эти крошечные вирусы дадут надежду многим неизлечимым больным. И лишь несколько исследовательских групп, движимых чисто научным любопытством, отправились изучать базовую биологию ААВ.

Прошло несколько десятков лет, и стало понятно, что ААВ обладает множеством уникальных свойств. Эти особенности позволяют использовать его в поистине революционном направлении — генной терапии. По разным оценкам, около 5% новорожденных детей страдает от различных генетических заболеваний [2]. Долгие годы такие болезни считались неизлечимыми, и для многих подобный диагноз приравнивался к приговору. К счастью, времена изменились. Мы находимся на пороге эры лекарств принципиально нового типа [3], и немаловажную роль в этом сыграл аденоассоциированный вирус [4].

Биология вируса

Какими же уникальными особенностями обладает ААВ? Чтобы ответить на этот вопрос, нужно подробнее поговорить про его жизненный цикл и строение.

Аденоассоциированный вирус принадлежит к роду Dependoparvovirus семейства Parvoviridae. Название рода отражает его необычный жизненный цикл, когда для размножения необходимо наличие вспомогательного вируса (от лат. Dependo — «зависеть»). В качестве такого вируса-помощника, как правило, выступает аденовирус (что явно следует из названия) или представители семейства герпесвирусов [5].

ААВ настолько безобиден, что помимо неспособности самостоятельно размножаться, он не вызывает никаких заболеваний человека и животных. Более того, согласно некоторым исследованиям, большинство людей (>70%) в течение жизни были заражены одним или несколькими серотипами ААВ [6]. (Серотип — вариант вируса, который отличается от других антигенами на своей белковой оболочке).

Вирус довольно мал — его икосаэдрическая белковая оболочка (капсид) в диаметре составляет всего около 25 нм (риc. 1а). Капсид необычайно стабилен: устойчив к кратковременному воздействию тепла, кислой среде и протеазам [7]. Геном, представленный одноцепочечной ДНК, по размерам также весьма скромен — всего 4,7 тысяч нуклеотидов [7].

Этот небольшой геном содержит минимальное количество генов. Ген rep (от слова replication) кодирует белки, необходимые для размножения вируса и его дальнейшей сборки внутри клетки (рис. 1б). Ген cap (от слова capsid) кодирует белки капсида (рис. 1б).

Геном ААВ обрамлен двумя Т-образными шпильками — инвертированными концевыми повторами (inverted terminal repeats, ITR) (рис. 1б).

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Рисунок 1. Аденоассоциированный вирус. а — Модель капсида ААВ. б — Геном аденоассоциированного вируса. ITR (inverted terminal repeats) — инвертированные концевые повторы, образующие Т-образные шпильки; rep — ген, кодирующий белки, отвечающие за репликацию; cap — ген, кодирующий белки капсида.

Судьба вируса в клетке

Ценное свойство ААВ — его способность проникать как в делящиеся, так и неделящиеся клетки [8]. На первом этапе аденоассоциированный вирус связывается с рецептором на поверхности клетки (рис. 2) [9]. Разные серотипы ААВ предпочтительно связываются со своими рецепторами, характерными для определенных типов клеток [10].

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Рисунок 2. Проникновение ААВ внутрь клетки. Пояснения в тексте.

[9], рисунок с изменениями

И это важное свойство — определенный серотип преимущественно проникает лишь в конкретную ткань или орган, то есть обладает своим уникальным тропизмом.

Связывание вируса с рецептором запускает процесс проникновения внутрь клетки. Эндосома (мембранный пузырек, содержащий вирусную частицу) передвигается в цитоплазме по цитоскелету. Постепенно среда в эндосоме закисляется, что приводит к изменениям капсида, необходимым для дальнейшего успешного заражения клетки. После выхода из эндосомы у вируса два пути. Либо он попадает в клеточную машину по уничтожению белков (протеасому) и разрушается, либо переносится в ядро, где вирусный геном высвобождается из капсида (рис. 2) [10].

С одноцепочечного вирусного генома еще не могут нарабатываться белки, для этого необходимо достроить вторую цепь ДНК. Она синтезируется с помощью ДНК-полимеразы клетки-хозяина, используя шпильку ITR в качестве затравки для построения второй цепи.

Вирусные ITR помогают не только строить вторую цепь ДНК, но способствуют межмолекулярной и внутримолекулярной рекомбинации геномов вируса. В результате в ядре клетки образуются кольцевые молекулы ДНК — эписомы (рис. 2). В такой форме геномы ААВ могут в течение многих лет присутствовать в ядре [10].

Кроме того, геном ААВ может с низкой частотой встраиваться в определенный локус на 19 хромосоме человека [11]. Этот феномен обусловлен сходством последовательностей ДНК данного локуса и ITR вируса. У ААВ, лишенного гена rep, способность к встраиванию своего генома сильно снижена. Такие вирусные геномы присутствуют в клетках в виде эписом.

Модификация ААВ для применения в генной терапии

Если в гене человека произошла мутация, которая привела к развитию заболевания, то болезнь можно победить или облегчить, если доставить в клетки организма рабочую копию поломанного гена. Вот тут и выходит на сцену аденоассоциированный вирус.

Что же нужно было в нем изменить, чтобы он стал курьером для доставки таких терапевтических генов? Как это часто бывает в биологии, ученые просто воспользовались успешными решениями, уже созданными природой. Раз капсид ААВ сам по себе является ключом к входу в клетку и ядро, то можно смело этим воспользоваться. Остается только заменить гены самого вируса на гены, интересующие исследователя, и вирусный курьер готов!

Модификация генома ААВ

Оказалось, что от всего генома ААВ необходимо было оставить только концевые шпильки ITR, необходимые для сборки самого вируса и сохранения его генома в ядре (рис. 3) [12]. Таким образом, можно без последствий удалить до 96% генома ААВ, используя полученное пространство для кодирования нужных генов.

Так как ААВ вмещает в себя всего около 5000 пар нуклеотидов, то нужно очень тщательно продумать остальной состав кассеты. В первую очередь туда необходимо поместить рабочую копию гена (трансген), в зависимости от того генетического заболевания, на которое направлено лечение. Также обязательно наличие регуляторных последовательностей, таких как промотор и сигнал полиаденилирования (рис. 3). Разберем элементы кассеты подробнее.

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Рисунок 3. Компоненты типичной кассеты ААВ вектора. Оранжевые блоки (промотор, трансген и сигнал полиаденилирования — рА) являются обязательными компонентами. Для повышения эффективности экспрессии могут быть включены необязательные регуляторные элементы, такие как интрон (I) и другие компоненты 3′-нетранслируемой области (НТО). Кассета обрамлена инвертированными терминальными повторами (ITR).

рисунок авторов статьи

Из-за ограниченной емкости вируса могут возникнуть трудности с доставкой больших терапевтических генов. Очевидное решение проблемы — разработка сокращенной версии гена, который кодирует усеченный, но функциональный белок. Создание таких укороченных генов требует глубокого понимания биологии терапевтического белка, взаимосвязи его структуры и функции. Такой подход уже успешно применяется в нескольких клинических испытаниях по лечению миодистрофии Дюшенна [13] (ссылки на клинические испытания: NCT03368742, NCT04281485, NCT03769116), в доклинических исследованиях по лечению дисферлинопатии, амавроза Лебера и многих других заболеваний.

Другим потенциально перспективным подходом для доставки слишком больших трансгенов может быть разделение гена между двумя ААВ-векторами [14]. Два этих векторных генома, попадая в одно и то же ядро клетки, могут подвергаться межмолекулярной рекомбинации с последующим восстановлением полноразмерного гена. Такой двухвекторный подход пока применяется лишь в редких клинических испытаниях (пример — NCT02710500). Низкая эффективность восстановления полноразмерного гена ограничивает более широкое применение этого приема.

Правильно выбранный промотор — во многом залог успешной генной терапии. Идеальный промотор должен запускать стабильную высокую экспрессию трансгена в пораженных органах в течение длительного периода, при этом быть неактивным в других тканях. Малая емкость ААВ также требует уменьшения размера промотора [15].

К кассету можно добавить необязательные элементы, способные улучшить экспрессию трансгена (рис. 3). Так, например, присутствие интрона повышает стабильность РНК в ядре [16], а также способствует эффективному транспорту мРНК из ядра в цитоплазму [17].

К обеспечению тканеспецифичности можно подойти с другой стороны — не только стимулируя экспрессию в целевых тканях, но и подавляя ее в нежелательных органах с помощью механизмов РНК-интерференции [18]. Для этого в 3′-НТО-кассеты добавляют сайты связывания микроРНК, присутствующих строго в нецелевых органах (рис. 3) [19]. Если трансген оказывается в нежелательном органе, то микроРНК связывается с комплементарными ей сайтами в транскрипте и запускает его деградацию.

Модификация капсида ААВ

Хотя капсид ААВ — сам по себе уже удачное изобретение природы, человечество не остановилось в своем научном поиске. Новые серотипы ААВ могут обладать рядом преимуществ:

Благодаря развитию новых методов анализа выделяют несколько основных направлений для создания или выявления новых серотипов.

К сожалению, всегда существует вероятность, что хорошо работающий in vitro модифицированный капсид в экспериментах на лабораторных животных продемонстрирует низкую эффективность или даже токсичность. Всестороннее изучение свойств разрабатываемых препаратов и строгий контроль качества призваны минимизировать риск неблагоприятного исхода исследований [23].

Применение ААВ в клинике

Целевые органы, на которые направлена терапия

К 14 декабря 2020 года 227 препаратов на основе ААВ проходят клинические испытания (по данным сайта ClinicalTrials.gov). Сегодня уже существует несколько препаратов на основе ААВ, которые получили одобрение от регулирующих органов для коммерческого использования у пациентов (подробнее про эти препараты можно почитать в [4]):

Большинство серотипов ААВ «предпочитают» проникать в такие органы, как печень, поперечно-полосатые мышцы и ЦНС, что и определило направление большинства программ генной терапии (рис. 4).

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Рисунок 4. Данные с сайта ClinicalTrials.gov: на 13 ноября 2018 г. было зарегистрировано 145 клинических испытаний с использованием ААВ. а — Классифицикация клинических испытаний на основе примененного серотипа ААВ (AAV). б — Целевой орган, на который направлена терапия в указанных клинических испытаниях. Можно заметить, что спустя два года количество клинических испытаний с применением ААВ почти удвоилось (227 на сегодняшний день против 145 испытаний два года назад).

Почти все природные серотипы ААВ эффективно заражают печень после внутривенного введения. Благодаря данному свойству вируса в клинических испытаниях находятся препараты для лечения гемофилии A и B (NCT03392974, NCT03587116), семейной гиперхолестеринемии (NCT02651675), дефицита орнитинтранскарбамилазы (NCT02991144), мукополисахаридоза-IIIA (NCT03612869) и синдрома Криглера—Найяра (NCT03223194) [25].

Серотипы ААВ8 и ААВ9 могут эффективно заражать разные типы мышц по всему телу. Такое свойство делает их идеальными векторами для генной терапии множества мышечных заболеваний [26]. Так, активно исследуются в клинике препараты для лечения миодистрофии Дюшенна (NCT03375164), дисферлинопатии (NCT02710500), миотубулярной миопатии (NCT03199469), болезни Помпе (NCT03533673). Примечательно, что зараженная мышца может также служить биофабрикой для производства секретирующихся терапевтических белков для лечения немышечных заболеваний. Хотя большинство сердечных заболеваний полигенны и подвержены влиянию окружающей среды, ведется разработка препаратов генной терапии для лечения сердечной недостаточности [26].

Большой процент разрабатываемых препаратов на основе ААВ направлен на лечение неврологических и глазных болезней (рис. 4) [27], [28]. Глаз — весьма обособленный орган, обладающий уникальной иммунологической толерантностью, и легко доступный для прямого введения препарата. Нетрудно понять, почему один из первых одобренных препаратов, «Люкстурна», был направлен именно на лечение наследственной слепоты. Мозг, напротив, намного более крупный и сложно организованный орган. Прямая доставка препарата в мозг или спинномозговую жидкость позволяет локализовать вирус и снизить дозу препарата, но это инвазивная процедура, сопряженная со многими рисками. К счастью, такие серотипы, как ААВ9 или ААВrh.10, могут пересекать гематоэнцефалический барьер, что позволяет использовать рутинное внутривенное введение. В настоящий момент в клинических испытаниях уже находятся препараты для лечения болезни Паркинсона (NCT02418598), метахроматической лейкодистрофии (NCT01801709), болезни Баттена (NCT01414985), мукополисахаридоза 3 типа (NCT03300453).

Основные стратегии генной терапии на основе рААВ

Можно выделить 4 глобальных направления генной терапии с применением ААВ (рис. 5).

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Рисунок 5. Основные стратегии генной терапии на основе ААВ. Пояснения в тексте.

[29], рисунок с изменениями

Производство ААВ

Когда речь идет о клинических испытаниях, требуется очень большое количество вирусного препарата высокого качества. Его производство — весьма нетривиальная задача.

Вирусы не могут самостоятельно себя воспроизводить, им необходима помощь клеточной машинерии. Для наработки ААВ стали использовать культуры клеток. Вариантов может быть много: использование культуры дрожжей (Saccharomyces cerevisiae) [33], клеток насекомых (культура клеток Sf9 бабочки Spodoptera frugiperda) [34], человека — HEK293, HeLa. Некоторые из этих подходов, — скорее, экзотика, но использование культур клеток млекопитающих (HEK293) или насекомых (Sf9) уже прочно закрепилось на производстве.

Итак, для начала необходимо определиться с методикой производства, ведь от этого зависит, в чем будет расти сама культура. Вариантов масса: для клеток, растущих, прикрепившись к субстрату, это могут быть большие чашки Петри, специальные сосуды с множеством перегородок для увеличения площади поверхности (рис. 6а). Для культур, хорошо чувствующих себя в виде суспензии и при постоянном перемешивании, — колбы, герметичные пакеты и многое другое. При увеличении масштабов производства можно переходить на специальные биореакторы (рис. 6б). С их помощью можно следить за целой панелью важных для процесса параметров. Они делают производство более технологичным и позволяют увеличить объемы продукции до нескольких сотен литров вирус-содержащей суспензии за один цикл работы.

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Рисунок 6. Производство ААВ: на культуральных чашках (а) и в биореакторе iCellis Nano (Pall corporation) (б)

фотографии авторов статьи

Что нужно сделать с культурой клеток, чтобы она стала биофабрикой по производству вирусных частиц? В такие клетки-производители вносят плазмидную ДНК, кодирующую необходимую для сборки вирусов информацию. Наиболее популярный протокол предполагает одновременное заражение клеток тремя плазмидами (рис. 7):

Кстати, вместо третьей плазмиды может быть добавлен сам вирус-помощник (аденовирус или герпесвирус), как это было в более ранних протоколах по производству частиц ААВ [35].

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Рисунок 7. Производство ААВ, использующее в качестве клеток-производителей культуру клеток человека HEK293. Смесь трех плазмид доставляют внутрь клетки (плазмиду с терапевтическим геном, плазмиду, кодирующая гены rep/cap, и плазмиду с генами вируса помощника). Начинается наработка необходимых белков для сборки вирусных частиц. ДНК, содержащая терапевтический ген, упаковывается в готовый капсид ААВ.

Клетки начинают производить вирусные частицы, после чего их надо собрать и очистить.

Это критически важный этап, которому стоит уделить особое внимание [22], [23]. Любые примеси, которые будут содержаться в препарате, могут вызвать нежелательный иммунный ответ.

Вначале собирают сырой материал: это может быть клеточная среда, если вирусы выделяются клетками преимущественно в жидкость вокруг, а могут быть и сами клетки, если большинство вирусных частиц накапливается внутри. Как правило, это зависит от конкретного серотипа ААВ. Чтобы разрушить клеточные мембраны и высвободить вирус, клетки подвергают многочисленным циклам замораживания-оттаивания, ультразвуковой обработке или воздействию детергентов.

Теперь основная задача — очистить вирусные частицы от многочисленных примесей, находящихся в суспензии (рис. 8). В сыром материале находятся внутриклеточные свободные ДНК и РНК, белки и ферменты, крупные обломки клеточных мембран и многое другое. Способов очистки существует множество, и постоянно появляются как улучшенные версии уже применяемых методик, так и принципиально новые подходы. Все они различаются по уровням специфичности, эффективности и, разумеется, стоимости. Условно способы очистки можно разделить на серотип-специфичные и универсальные. К первой категории относится, например, аффинная хроматография [37], основанная на специфическом узнавании капсидов антителами. Ко второй — ультрацентрифугирование в градиентах плотности растворов йодиксанола или хлорида цезия, преципитация полиэтиленгликолем или сульфатом аммония, ионообменная хроматография и многие другие методы, основанные на общих физических свойствах вирусных частиц [38].

что такое дезактивированный вирус. Смотреть фото что такое дезактивированный вирус. Смотреть картинку что такое дезактивированный вирус. Картинка про что такое дезактивированный вирус. Фото что такое дезактивированный вирус

Рисунок 8. Окрашивание серебром очищенного (лунки 1–3) и загрязненного другими белками (лунки 4–8) препарата ААВ после гель-электрофореза [38].

Одна из неочевидных нежелательных примесей — так называемые пустые капсиды — вирусные частицы, не несущие в себе терапевтический ген, или содержащие внутри себя постороннюю ДНК. Дело в том, что изначально в клетке формируется пул пустых капсидов. Лишь потом ДНК связывается с пустым капсидом при помощи специальных сигналов на ITR и компактно упаковывается, формируя полноценную вирусную частицу. Но иногда пустой капсид может так и остаться пустым при нехватке вирусной ДНК или ее неэффективной упаковке. В пустой капсид может также упаковаться обрывок свободной ДНК, находящейся в клетке и содержащей последовательность, схожую с сигналом упаковки. Такие частицы (совсем пустые или несущие неправильную последовательность) не функциональны и подлежат удалению из очищаемого препарата. С определенной эффективностью их можно отделить от функциональных капсидов, используя градиенты плотности или методы хроматографии.

Основные проблемы

Наработка большого количества плазмид высокой степени очистки, поддержание культур клеток, дорогостоящие реактивы, сложный процесс очистки вирусных частиц и разработка аналитических методик для характеризации препаратов ведут к таким космическим ценам при масштабировании производства. На стоимость также влияет серьезный контроль качества вирусного препарата. Чтобы препарат вышел на рынок, проводятся исследования его токсичности, безопасности, биораспределения, эффективности. Оценивается содержание белковых примесей, бактериальных эндотоксинов, количество пустых капсидов, стерильность препарата, концентрация вирусных частиц в растворе и множество других характеристик [23]. В настоящий момент гиганты производств ААВ по всему миру работают над удешевлением препаратов, разрабатывая более эффективные протоколы сборки и очистки ААВ.

Иммунный ответ также представляет собой серьезную проблему. Потенциально иммунные реакции могут возникать на вирусный капсид, его геном, а также на белковый продукт трансгена. Препаратам на основе ААВ могут помешать нейтрализующие антитела к его капсиду [39]. Связываясь с вирусами в кровотоке, антитела препятствуют проникновению вирусных частиц в клетки, что ведет к низкой эффективности препарата. В настоящий момент обязательно проводится скрининг пациентов на наличие антител к применяемому серотипу ААВ [40]. В случае их обнаружения такой пациент исключается из клинических испытаний. Ведется разработка новых капсидов, которые не будут узнаваться нейтрализующими антителами [41]. После доставки терапевтических доз ААВ быстро развивается гуморальный иммунный ответ, который впоследствии помешает повторному введению препарата [42]. Именно поэтому большинство генотерапевтических препаратов на основе ААВ рассчитано на однократное введение. Для подавления Т-клеточного иммунного ответа у пациентов применяется фармакологическая супрессия стероидами [40].

Заключение

Генная терапия на основе ААВ — бурно развивающееся направление, и мы в данном обзоре затронули лишь небольшой кусочек этой удивительной области. Текущий экспоненциальный рост клинических испытаний с использованием ААВ предполагает, что мы находимся в самом начале эры новых генотерапевтических препаратов. Еще очень много задач предстоит решить, и для этого требуются мультидисциплинарные усилия. Дальнейшее развитие молекулярной биологии, биоинформатики, эпидемиологии, структурной биологии, иммунологии, геномики и других дисциплин, безусловно, будет способствовать совершенствованию технологии. Уже пройден длинный путь в попытке человечества победить генетические заболевания. Мы надеемся, что именно генная терапия приведет к окончательной победе!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *