что такое децибел для чайников
Что такое децибел?
Перевод из децибел в разы и обратно
Довольно часто в популярной радиотехнической литературе, в описании электронных схем употребляется единица измерения – децибел (дБ или dB).
При изучении электроники начинающий радиолюбитель привык к таким абсолютным единицам измерения как Ампер (сила тока), Вольт (напряжение и ЭДС), Ом (электрическое сопротивление) и многим другим, с помощью которых обозначают количественно тот или иной электрический параметр (ёмкость, индуктивность, частоту).
Начинающему радиолюбителю, как правило, не составляет особого труда разобраться, что такое ампер или вольт. Тут всё понятно, есть электрический параметр или величина, которую нужно измерить. Есть начальный уровень отсчёта, который принимается по умолчанию в формулировке данной единицы измерения. Есть условное обозначение этого параметра или величины (A, V). И вправду, как только мы читаем надпись 12 V, то мы понимаем, что речь идёт о напряжении, аналогичном, например, напряжению автомобильной аккумуляторной батареи.
Но как только встречается надпись, к примеру: напряжение повысилось на 3 дБ или мощность сигнала составляет 10 дБм (10 dBm), то у многих возникает недоумение. Как это? Почему упоминается напряжение или мощность, а значение указывается в каких-то децибелах?
Практика показывает, что не многие начинающие радиолюбители понимают, что же такое децибел. Попытаемся развеять непроглядный туман над такой таинственной единицей измерения как децибел.
Что такое децибел?
Единицу измерения под названием Бел стали впервые применять инженеры телефонной лаборатории Белла. Децибел является десятой частью Бела (1 децибел = 0,1 Бел). На практике широко используется как раз децибел.
Как уже говорилось, децибел, это особенная единица измерения. Стоит отметить, что децибел не является частью официальной системы единиц СИ. Но, несмотря на это, децибел получил признание и занял прочное место наряду с другими единицами измерения.
Вспомните, когда мы хотим объяснить какое-либо изменение, мы говорим, что, например, стало ярче в 2 раза. Или, например, напряжение упало в 10 раз. При этом мы устанавливаем определённый порог отсчёта, относительно которого и произошло изменение в 10 или 2 раза. С помощью децибел также измеряют эти “разы”, только в логарифмическом масштабе.
График логарифмической зависимости
Например, изменение на 1 дБ, соответствует изменению энергетической величины в 1,26 раза. Изменение на 3 дБ соответствует изменению энергетической величины в 2 раза.
Но зачем так заморачиваться с децибелами, если отношения можно измерять в разах? На этот вопрос нет однозначного ответа. Но уж, поскольку, децибелы активно применяются, то наверняка это оправдано.
Причины для использования децибел всё-таки есть. Перечислим их.
Частично ответ на этот вопрос кроется в так называемом законе Вебера-Фехнера. Это эмпирический психофизиологический закон, т.е основан он на результатах реальных, а не теоретических экспериментов. Суть его заключается в том, что любые изменения каких-либо величин (яркости, громкости, веса) ощущаются нами при условии, если эти изменения носят логарифмический характер.
График зависимости ощущения громкости от силы (мощности) звука. Закон Вебера-Фехнера
Так, например, чувствительность человеческого уха уменьшается с ростом уровня громкости звукового сигнала. Именно поэтому, при выборе переменного резистора, который планируется применить в регуляторе громкости звукового усилителя стоит брать с показательной зависимостью сопротивления от угла поворота ручки регулятора. В этом случае, при повороте движка регулятора громкости звук в динамике будет нарастать плавно. Регулировка громкости будет линейной, так как показательная зависимость регулятора громкости компенсирует логарифмическую зависимость нашего слуха и в сумме станет линейной. При взгляде на рисунок это станет более понятно.
Зависимость сопротивления переменного резистора от угла поворота движка (А-линейная, Б-логарифмическая, В-показательная)
Здесь показаны графики зависимости сопротивления переменных резисторов разных типов: А – линейная, Б – логарифмическая, В – показательная. Как правило, на переменных резисторах отечественного производства указывается, какой зависимостью обладает переменный резистор. На тех же принципах основаны цифровые и электронные регуляторы громкости.
Также стоит отметить, что человеческое ухо воспринимает звуки, мощность которых различается на колоссальную величину в 10 000 000 000 000 раз! Таким образом, самый громкий звук отличается от самого тихого, который может уловить наш слух, на 130 дБ (10 000 000 000 000 раз).
Вторая причина широкого использования децибел является простота вычислений.
Согласитесь, что куда проще при вычислениях использовать небольшие числа вроде 10, 20, 60,80,100,130 (наиболее часто используемые числа при расчёте в децибелах) по сравнению с числами 100 (20 дБ), 1000 (30 дБ), 1000 000 (60 дБ),100 000 000 (80 дБ),10 000 000 000 (100 дБ), 10 000 000 000 000 (130 дБ). Ещё одним достоинством децибел является то, что их просто суммируют. Если проводить вычисления в разах, то числа необходимо умножать.
Например, 30 дБ + 30 дБ = 60 дБ (в разах: 1000 * 1000 = 1000 000). Думаю, с этим всё ясно.
Также децибелы очень удобны при графическом построении различных зависимостей. Все графики вроде диаграмм направленности антенн, амплитудно-частотных характеристик усилителей выполняют с применением децибел.
Децибел является безразмерной единицей измерения. Мы уже выяснили, что децибел на самом деле показывает, во сколько раз возросла, либо уменьшилась какая-либо величина (ток, напряжение, мощность). Отличие децибел от разов заключается лишь в том, что происходит измерение по логарифмическому масштабу. Чтобы это как-то обозначить и приписывают обозначение дБ. Так или иначе, при оценке приходится переходить от децибел к разам. Сравнивать с помощью децибел можно любые единицы измерения (не только ток, напряжение и проч.), так как децибел является относительной, безразмерной величиной.
Если указывается знак “-”, например, –1 дБ, то значение измеряемой величины, например, мощности, уменьшилось в 1,26 раз. Если перед децибелами не ставят никакого знака, то речь идёт об увеличении, росте величины. Это стоит учитывать. Иногда вместо знака “-” говорят о затуханиях, снижении коэффициента усиления.
Переход от децибел к разам.
На практике чаще всего приходится переходить от децибел к разам. Для этого есть простая формула:
Внимание! Данные формулы применяются для так называемых “энергетических” величин. Таких как энергия и мощность.
Например, 1дБ равен 10 (1дБ / 10) = 1,258925…= 1,26 раза.
при 20 дБ: 10 (20дБ / 10) = 100 (увеличение величины в 100 раз)
при 10 дБ: 10 (10дБ / 10) = 10 (увеличение в 10 раз)
Переход от разов к децибелам можно осуществить по следующей формуле:
Например, рост мощности в 4 раза будет соответствовать значению в 6,021 дБ.
10 * log10(4) = 6,021 дБ.
Внимание! Для пересчёта отношений таких величин как напряжение и сила тока существуют немного иные формулы:
(Сила тока и напряжение, это так называемые “силовые” величины. Поэтому и формулы отличаются.)
Для перехода к децибелам: n = 20 * log10(m)
Для перехода от децибел к разам: m = 10 (n / 20)
n – значение в децибелах, m – отношение в разах.
Если Вы успешно дошли до этих строк, то считайте, что сделали ещё один весомый шаг в освоении электроники!
Что такое децибел
Очень часто новички сталкивается с таким понятием, как децибел. Многие из них интуитивно догадываются, что это такое, но у большинства до сих пор возникают вопросы.
Что такое децибел?
Относительные логарифмические единицы Белы (децибелы) широко используются при количественных оценках параметров различных аудио, видео, измерительных устройств. Физическая природа сравниваемых мощностей может быть любой — электрической, электромагнитной, акустической, механической, — важно лишь, чтобы обе величины были выражены в одинаковых единицах — ваттах, милливаттах и т. п. Бел выражает отношение двух значений энергетической величины десятичным логарифмом этого отношения, причем под энергетическими величинами понимаются: мощность, энергия.
Кстати, эта единица получила свое название в честь Александра Белл (1847 — 1922) — американского ученого шотландского происхождения, основоположника телефонии, основателя всемирно известных компаний AT&T и «Bell Laboratories». Еще интересно напомнить, что во многих современных мобильных телефонах (смартфонах) обязательно есть выбираемый звук звонка (оповещения), так и называемый «bell». Впрочем, Бел относится к единицам, не входящим в Международную систему единиц (СИ), но в соответствии с решением Международного комитета мер и весов допускается к применению без ограничений совместно с единицами СИ. В основном применяется в электросвязи, акустике, радиотехнике.
Формулы для вычисления децибелов
P1 — мощность до усиления, Вт
P2 — мощность после усиления или ослабления, Вт
На практике, оказалось, что удобнее пользоваться уменьшенным в 10 раз значением Бел, т.е. децибел, поэтому:
дециБел (дБ) = 10 * lg(P2/P1)
Усиление или ослабление мощности в децибелах выражается формулой:
NдБ — усиление, либо ослабление мощности в децибелах
P1 — мощность до усиления, Вт
P2 — мощность после усиления или ослабления, Вт
Значения Бел, децибел могут быть со знаком «плюс», если P2 > P1 (усиление сигнала) и со знаком «минус», если P2
Во многих случаях, сравнение сигналов путем измерения мощностей может быть неудобным или невозможным — проще измерить напряжение или ток.
В этом случае, если мы сравниваем напряжения или токи, формула примет уже другой вид:
NдБ — усиление, либо ослабление мощности в децибелах
U1 — это напряжение до усиления, В
U2 — напряжение после усиления, В
I2 — сила тока после усиления, А
Вот небольшая табличка, в которой приведены основные отношения напряжений и соответствующее число децибел:
Дело в том, что операции умножения и деления над числами в обычном базисе, заменяются операциями сложения и вычитания в логарифмическом базисе. Например, у нас есть два каскадно-включенных усилителя с коэффициентами усиления K1 = 963 и K2 = 48. Какой общий коэффициент усиления? Правильно — он равен произведению K = K1 * K2. Вы можете в уме быстро вычислить 963*48? Я — нет. Я могу прикинуть K = 1000*50 = 50 тыс., не более. А, если нам известно, что K1 = 59 дБ и K2 = 33 дБ, то К = 59+33 = 92 дБ — сложить было не трудно, надеюсь.
Закон Вебера-Фехнера
Почему именно децибелы? Все исходит от закона Вебера-Фехнера, который говорит нам, что интенсивность ощущения человеческих чувств прямо-пропорциональна логарифму интенсивности какого-либо раздражителя.
Так светильник, в котором восемь лампочек, кажется нам настолько же ярче светильника из четырёх лампочек, насколько светильник из четырёх лампочек ярче светильника из двух лампочек. То есть количество лампочек должно увеличиваться каждый раз вдвое, чтобы нам казалось, что прирост яркости постоянен. То есть если добавить к нашим 32 лампочкам на графике еще одну лампочку, то мы даже и не заметим разницы. Для того, чтобы для нашего глаза была заметна разница, мы должны к 32 лампочкам добавить еще 32 лампочки, и т.д. Или иными словами, для того, чтобы нам казалось, что наш светильник плавно набирает яркость, нам надо зажигать вдвое больше лампочек каждый раз, чем было предыдущее значение.
Поэтому децибел действительно удобнее в некоторых случаях, так как сравнивать две величины намного проще в маленьких цифрах, чем в миллионах и миллиардах. А так как электроника — это чисто физическое явление, то и децибелы не обошли ее стороной.
Децибелы и АЧХ усилителя
Как вы помните в прошлом примере с ОУ, у нас неинвертирующий усилитель усиливал сигнал в 10 раз. Если посмотреть в нашу табличку, то это получается 20 дБ относительно входного сигнала. Ну да, так оно и есть:
Также в дБ на некоторых графиках АЧХ обозначают наклон характеристики АЧХ. Это может выглядеть примерно вот так:
Давайте рассмотрим пример. Имеем фильтр высоких частот (ФВЧ) первого порядка, собранного на RC-цепи.
Его АЧХ будет выглядеть следующим образом (кликните для полного открытия)
Итак возьмем первую точку на частоте в 10 Герц. На частоте в 10 Герц амплитуда сигнала уменьшилась на 44 дБ, это видно в правом нижнем углу (out:-44)
Умножаем частоту на 10 (декада) и получаем вторую точку в 100 Герц. На частоте в 100 Герц наш сигнал уменьшился приблизительно на 24 дБ
Что еще измеряют в децибелах?
Uc — это эффективное значение напряжения сигнала, В
Uш — эффективное значение напряжения шума, В
Чем выше значение сигнал/шум, тем более чистый звук обеспечивается аудиосистемой. Для музыкальной аппаратуры желательно, чтобы это отношение было не менее 75 дБ, а для Hi-Fi аппаратуры не менее 90 дБ. Не имеет значение физическая природа сигнала, важно, чтобы единицы были в одинаковых измерениях.
В качестве единицы логарифмического отношения двух одноимённых физических величин применяется также непер (Нп) — 1 Нп
0,8686 Б. В основе лежит не десятичный (lg), а натуральный (ln) логарифм отношений. В настоящее время используется редко.
Во многих случаях, удобно сравнивать между собой не произвольные величины, а одну величину относительно другой, названной условно опорной (нулевой, базовой).
В электротехнике, в качестве такой опорной или нулевой величины выбрано значение мощности равное 1 мВт выделяемое на резисторе сопротивлением 600 Ом.
В этом случае, базовыми значениями при сравнении напряжений или токов станут величины 0.775 В или 1.29 мА.
Для звуковой мощности такой базовой величиной является 20 микроПаскаль (0 дБ), а порог +130 дБ считается болевым для человека:
Более подробно об этом написано в Википедии по этой ссылке.
Для случаев когда в качестве базовых значений используются те или иные конкретные величины, придуманы даже специальные обозначения единиц измерений:
dbW (дБВт) — здесь отсчет идет относительно 1 Ватта (Вт). Например, пусть уровень мощности составил +20 дБВт. Это значит что мощность увеличилась в 100 раз, то есть на 100 Вт.
dBm (дБм) — здесь у нас отсчет уже идет относительно 1 милливатта (мВт). Например, уровень мощности в +30дБм будет соответственно равен 1 Вт. Не забываем, что это у нас энергетические децибелы, поэтому для них будет справедлива формула
Следующие характеристики — это уже амплитудные децибелы. Для них будет справедлива формула
dBV (дБВ) — как вы догадались, опорное напряжение 1 Вольт. Например, +20дБВ даст — это 10 Вольт
От дБВ также вытекают другие виды децибелов с разными приставками:
dBmV (дБмВ) — опорный уровень 1 милливольт.
dBuV (дБмкВ) — опорное напряжение 1 микровольт.
Здесь я привел наиболее употребимые специальные виды децибелов в электронике.
Децибелы используются и в других отраслях, где они также показывают отношение каких-либо двух измеряемых величин в логарифмическом масштабе.
Также на YouTube есть интересное видео о децибелах.
Что такое децибел для чайников
Когда требуется сравнить какие-нибудь величины, это можно сделать по-разному. Можно, например, разделив эти величины одну на другую, сказать — Р1 больше чем Р2 в 3 раза, или Р1, меньше чем Р2 в 28 раз. Если нам понадобится далее вести какие-то расчеты, мы будем пользоваться отвлеченными числами 3, или 28, или 1/28 (иногда для уточнения добавляя слово «раз»).
В ряде случаев для расчетов или для большей наглядности сравнения оказывается удобнее логарифмировать отношение величин и оперировать далее с числом logа(Р1/Р2). Известно, что применение логарифмов упрощает математические расчеты, в частности, позволяет вместо умножения и деления пользоваться сложением и вычитанием. При большом диапазоне изменений какой-либо величины логарифмический масштаб позволяет лучше разглядеть на одном и том же графике и малые, и большие ее относительные изменения.
Чтобы различать, имеем ли мы дело с числом «раз» или с его логарифмом, а также чтобы зафиксировать, каким основанием мы пользуемся при логарифмировании (числом 10, числом e=2,71828 или иным), следует присвоить этому логарифму какое-нибудь название. В системе СИ в качестве относительной логарифмической единицы отношения мощностей Р1, и Р2 принят десятичный логарифм Ig(Р1/Р2). Эта единица называется бел (Б).
На практике этой довольно крупной единицей оказалось не очень удобно оперировать, поэтому ее «разменивают» на единицы, в десять раз меньшие — децибелы. Соотношение двух уровней мощности Р1 и Р2 в децибелах (дБ, или dB) выражают по следующей формуле:
Множитель 10 в формуле (1) появился потому, что десять децибел как раз и есть один бел. Таким образом, не повезло изобретателю телефона А.Г.Беллу — мало того, что единицу его имени укоротили на одну букву «л», так еще и пользуются лишь десятыми долями.
Теперь разберемся с отношениями напряжений или токов. Вспомним из школьного курса, что мощность в линейной цепи равна:
Отсюда легко видеть, что:
Из школьного же курса вспомним:
Из равенств (2) и (3) вытекает следующее:
Это и есть формула взаимосвязи между «белами по мощности» и «белами по напряжению» в одной и той же цепи, если в ней выполняется закон Ома. Ну, а если мы намерены пользоваться десятыми долями бела, то обе половины этого уравнения необходимо умножить на 10. Отсюда следует, что при сравнении величин напряжений (U1 и U2) или токов (I1 и l2), их соотношение в децибелах:
Полезно запомнить несколько характерных значений, приведенных в таблице.
Если напряжение на резисторе увеличить вдвое (на +6 дБ «по напряжению»), то и протекающий через него ток увеличится вдвое (на +6 дБ «по току»), а мощность, выделяемая этим резистором, станет вчетверо больше—опять-таки на +6 дБ («по мощности»). Чтобы уменьшить мощность в 10 раз (-10 дБ), нужно снизить приложенное к резистору напряжение в 3,162 раза (-10 дБ), отчего ток по закону Ома тоже уменьшится в 3,162 раза (-10 дБ).
Поскольку мощность в линейной цепи пропорциональна квадрату напряжения или тока, численные значения соотношений их величин, выраженные в децибелах, остаются одними и теми же как при сравнении мощностей, так и при сравнении напряжений или токов:
В случае ослабления сигнала (когда отношение Р1/Р2 меньше единицы), логарифм становится отрицательным, следовательно, отрицательным становится и коэффициент передачи данной цепи, выраженный в децибелах. Для вычисления общего коэффициента передачи нескольких последовательно соединенных цепей или устройств достаточно просуммировать значения в децибелах с учетом их знаков (+) или (-). Это
намного удобнее, чем перемножать исходные значения в разах.
При вычислении коэффициента передачи различных устройств (например, усилительного каскада) во многих случаях мы имеем дело с разными входным и выходным сопротивлениями; в нелинейных цепях напряжение и ток взаимно не пропорциональны, а мощность не связана с тем и другим квадратичной зависимостью. Коэффициенты передачи таких цепей по току:
различны и в разах, и в децибелах; коэффициент передачи по мощности:
Равенство (6) к этим случаям не относится, но по отдельности изменения или соотношения величин тока или напряжения на одном и том же линейном сопротивлении (например, на сопротивлении нагрузки нелинейного усилителя) все равно выражаются в децибелах формулами (4) и (5), а изменения уровня мощности — формулой (1).
Зачем возиться с логарифмами? Во-первых, логарифмическая шкала наиболее естественна для наших органов чувств, в частности, для слуха. Закон логарифмической зависимости ощущений от силы воздействия сформулирован Вебером и Фехнером (обычно называется законом Вебера) — «одинаковые относительные изменения раздражающей силы вызывают одинаковые приращения слухового ощущения, т.е. слуховое ощущение пропорционально логарифму раздражающей силы».
Практически, 1 дБ — это наименьшая ступенька изменения интенсивности звука, едва обнаруживаемая на слух, изменение на 6 дБ воспринимается на слух как хорошо заметное (но небольшое — примерно вдвое громче), на 10 дБ — значительное, а на 20 дБ—как весьма большое. Каждый балл по шкале S системы RST — это 6 дБ (или 0,6 бела), так что мы, особо не задумываясь, занимаемся логарифмированием каждый раз, когда начинаем очередную связь в эфире, передавая рапорт корреспонденту.
Во-вторых, значения величин, с которыми нередко приходится сталкиваться, в обычном исчислении бывает трудно соразмерить—скажем, 1 микровольт отличается от 1 киловольта в 1 000 000 000 раз. А в децибелах разница выражается вполне удобной величиной 180 дБ. Мощности, которые выделятся на одном и том же сопротивлении при приложении к нему этих напряжений, будут отличаться астрономически — в 1 000 000 000 000 000 000 раз, а в децибелах — все на те же 180 дБ. С другой стороны, если, например, сравнивать 1,03 мА и 1,37 мА, то их отличие выразится вполне заметной величиной — 2,5 дБ.
Если запомнить характерные значения из таблицы, то можно очень легко пересчитывать в уме и любые другие величины отношений в децибелы и обратно. Например, 4 дБ—это (3 дБ +1 дБ). Значит, отношение мощностей (2×1,26)= 2,52 раза или отношение напряжениий (1,41 х 1,12) =1,6 раза. Или, к примеру, отношение двух значений тока равно 17 раз, то есть (10×1,7). 10 раз по току — это 20 дБ, а 1,7 раза — между 1,41 и 2, значит, где-то около 4,5 дБ. В сумме (20 дБ + 4,5 дБ) = 24,5 дБ. Ну, а для чисел, кратных десяти, мнемоника очевидна.
В акустике за 0 дБ однозначно принято пороговое звуковое давление 2-10 Па, и децибел без дополнительного индекса прямо используется в качестве единицы уровня звукового давления.
Надеюсь, что теперь понятно, почему «выжимать» 250 Вт из 200-ваттного передатчика просто глупо — увеличение силы сигнала менее чем на 1 дБ вообще никто не заметит, а вот сплэттер или щелчки по всему диапазону вполне реально могут испортить настроение многим.
О чувствительности приемника и S-метра
Чувствительность приемников часто измеряют в децибел-милливаттах (дБм) или дБмВт: 1 мВт = 0 дБм.
Система оценки сигнала на слух по коду RST была предложена W2BSR в середине 30-х годов и с тех пор стала всемирно признанной. Стандарт градуировки S-метров был установлен IARU в 60-х годах, но когда его принимали, похоже, что ориентировались на не очень чувствительные приемники, а может быть, и на «тугоухих» операторов. (Hi). Впрочем, в те годы еще широко использовалась амплитудная модуляция (AM), в CW-приемниках сравнительно редко встречались хорошие узкополосные фильтры, а собственные шумы радиодеталей были побольше чем сейчас, так что чувствительность среднего любительского приемника была на порядок хуже, чем у современного.
В трансиверах разных фирм стандарт IARU не очень-то соблюдается. Кроме того, чувствительность одного и того же приемника на разных диапазонах различается и может ступенчато регулироваться оператором (включением или выключением преду-силителей ВЧ и аттенюаторов), а шкала S-метра остается одна на все случаи. Если включен аттенюатор, то следует величину его затухания прибавить к показаниям S-метра, а если включен дополнительный пре-дусилитель — то величину его усиления из показаний S-метра вычесть. Разумеется, это относится только к случаю использования для приема полноразмерных согласованных антенн. Когда действующая высота антенны мала, или антенна не согласована со входом приемника, показания S-метра сами по себе ничего не скажут о реальном уровне сигнала в эфире.
В сущности, единственной полной и действительно объективной характеристикой уровня сигнала, создаваемого каким-либо передатчиком в точке приема, является напряженность поля, которую можно вычислить, разделив ЭДС на клеммах приемной антенны UA на ее действующую высоту hд:
Действующая высота (или действующая длина) антенны вычисляется по формуле: