что такое детерминизм в физике

ДЕТЕРМИНИЗМ И ПРИЧИННОСТЬ В СОВРЕМЕННОЙ ФИЗИКЕ. ДИНАМИЧЕСКИЕ И СТАТИСТИЧЕСКИЕ ЗАКОНЫ

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей и находит свое более полное и общее отражение в фундаментальных физических теориях.

Фундаментальные физические теории (законы) представляют собой совокупность наиболее существенных знаний о физических закономерностях. Эти знания не являются исчерпывающими, но на сегодняшний день они наиболее полно отражают физические процессы в природе. В свою очередь, на основе тех или иных фундаментальных теорий формулируются частные физические законы типа закона Архимеда, закона Ома, закона электромагнитной индукции и т.д.

Ученые-науковеды едины во мнении, что основу любой физической теории составляют три главных элемента:

Кроме того, для решения проблемы причинности важное значение имеет подразделение физических законов и теорий на динамические и статистические (вероятностные).

ДИНАМИЧЕСКИЕ ЗАКОНЫ И ТЕОРИИ И МЕХАНИЧЕСКИЙ, ДЕТЕРМИНИЗМ

Непосредственно законы механики, сформулированные Ньютоном, относятся к физическому телу, размерами которого можно пренебречь, материальной точке. Но любое тело макроскопических размеров всегда можно рассматривать как совокупность материальных точек и, следовательно, достаточно точно описать его движения.

Поэтому в современной физике под классической механикой понимают механику материальной точки или системы материальных точек и механику абсолютно твердого тела.

Для расчета движения должна быть известна зависимость взаимодействия между частицами от их координат и от скоростей. Тогда по заданным значениям координат и импульсов всех частиц системы в начальный момент времени второй закон Ньютона позволяет однозначно определить координаты и импульсы в любой последующий момент времени. Это позволяет утверждать, что координаты и импульсы частиц системы полностью определяют ее состояние в механике. Любая механическая величина, представляющая для нас интерес (энергия, момент импульса и т.д.), выражается через координаты и импульс. Таким образом, определяются все три элемента фундаментальной теории, какой является классическая механика.

Другим примером фундаментальной физической теории динамического характера может служить электродинамика Максвелла. Здесь объектом исследования является электромагнитное поле. Тогда уравнения Максвелла представляют собой уравнения движения для электромагнитной формы материи. При этом структура электродинамики в самых общих чертах повторяет структуру механики Ньютона. Уравнения Максвелла позволяют по заданным начальным значениям электрического и магнитного полей внутри некоторого объема однозначно определить электромагнитное поле в любой последующий момент времени.

Другие фундаментальные теории динамического характера имеют ту же структуру, что и механика Ньютона, и электродинамика Максвелла. К их числу относятся: механика сплошных сред, термодинамика и общая теория относительности (теория гравитации).

Метафизическая философия считала, что все объективные физические закономерности (и не только физические) имеют точно такой же характер, что и динамические законы. Иначе говоря, не признавались никакие другие виды объективных закономерностей, кроме динамических закономерностей, выражающих однозначные связи физических объектов и описывающих их абсолютно точно посредством определенных физических величин. Отсутствие такого полного описания трактовалось как недостаток наших познавательных способностей.

Абсолютизация динамических закономерностей и, следовательно, механического детерминизма, обычно связывается с П.Лапласом, которому принадлежит уже цитированное нами знаменитое высказывание о том, что если бы нашелся достаточно обширный ум, которому были бы известны для любого данного момента все силы, действующие на все тела Вселенной (от самых больших ее тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным, и ему было бы открыто как прошлое, так и будущее Вселенной.

Согласно провозглашенному Лапласом принципу, все явления в природе предопределены с «железной» необходимостью. Случайному, как объективной категории, нет места в нарисованной Лапласом картине мира. Только ограниченность наших познавательных способностей заставляет рассматривать отдельные события в мире как случайные. В силу этих причин, а также отмечая роль Лапласа, классический механический детерминизм называют еще жестким или лапласовским детерминизмом.

Необходимость отказа от классического детерминизма в физике стала очевидной после того, как выяснилось, что динамические законы не универсальны и не единственны и что более глубокими законами природы являются не динамические, а статистические законы, открытые во второй половинеXIX века, особенно после того, как выяснился статистический характер законов микромира.

Но даже и при описании движения отдельных макроскопических тел осуществление идеального классического детерминизма практически невозможно. Это хорошо видно из описания постоянно меняющихся систем. Вообще начальные параметры любых механических систем невозможно фиксировать с абсолютной точностью, поэтому точность предсказания физических величин со временем уменьшается. Для каждой механической системы существует некоторое критическое время, начиная с которого невозможно точно предсказать ее поведение.

Несомненно, что лапласовский детерминизм с определенной степенью идеализации отражает реальное движение тел и в этом отношении его нельзя считать ложным. Но абсолютизация его как совершенно точного отображения действительности недопустима.

С утверждением главенствующего значения статистических закономерностей в физике исчезает идея всеведущего сознания, для которого абсолютно точно и однозначно детерминированы судьбы мира, тот идеал, который был поставлен перед наукой концепцией абсолютного детерминизма.

Источник

Является ли физика детерминированной?

В классической физике обычно предполагается, что если мы знаем, где находится объект и какова его скорость, мы можем точно предсказать, куда он будет двигаться.

что такое детерминизм в физике. Смотреть фото что такое детерминизм в физике. Смотреть картинку что такое детерминизм в физике. Картинка про что такое детерминизм в физике. Фото что такое детерминизм в физике

Исследователи из Австрийской академии наук, Венского университета и Женевского университета предложили новую интерпретацию классической физики без действительных чисел. Это новое исследование бросает вызов традиционному детерминистскому взгляду на классическую физику.

В классической физике обычно предполагается, что если мы знаем, где находится объект и какова его скорость, мы можем точно предсказать, куда он будет двигаться. Предполагаемый высший разум, обладающий знанием всех существующих в настоящее время объектов, сможет с уверенностью знать будущее, а также прошлое вселенной с бесконечной точностью.

Пьер-Симон Лаплас проиллюстрировал этот аргумент, позже названный демоном Лапласа, в начале 1800-х годов, чтобы проиллюстрировать концепцию детерминизма в классической физике. Обычно считается, что только с появлением квантовой физики был поставлен под сомнение детерминизм. Ученые выяснили, что не все можно сказать с уверенностью, и мы можем только рассчитать вероятность того, что что-то может вести себя определенным образом.

Но действительно ли классическая физика является полностью детерминированной? Флавио Дель Санто, исследователь Венского института квантовой оптики и Австрийской академии наук и Николас Гизен из Женевского университета, решают этот вопрос в своей новой статье «Физика без детерминизма: альтернативные интерпретации «Классической физики».

Опираясь на предыдущие работы последнего автора, они показывают, что обычная интерпретация классической физики основана на неявных дополнительных предположениях.

Когда мы измеряем что-то, скажем, длину стола с помощью линейки, мы находим это значение с конечной точностью, то есть с конечным числом цифр. Даже если мы будем использовать более точный измерительный инструмент, мы просто найдем больше цифр, но все равно их конечное число.

Тем не менее, классическая физика предполагает, что даже если мы не сможем измерить их, существует бесконечное количество заранее определенных цифр. Это означает, что длина стола всегда идеально определена.

Теперь представьте, что вы играете в настольную игру типа Багатель (как на рисунке), где доска заполнена столбиками. Когда маленький шарик катится по доске, он ударяется о столбики и перемещается вправо или влево от каждого из них.

что такое детерминизм в физике. Смотреть фото что такое детерминизм в физике. Смотреть картинку что такое детерминизм в физике. Картинка про что такое детерминизм в физике. Фото что такое детерминизм в физикеВ детерминированном мире совершенное знание начальных условий, при которых мяч входит в доску (его скорость и положение), однозначно определяет путь, по которому будет идти мяч между препятствиями.

Классическая физика предполагает, что если мы не можем получить один и тот же путь в разных сериях, то это только потому, что на практике мы не смогли установить точно одинаковые начальные условия. Например, потому что у нас нет бесконечно точного измерительного инструмента, чтобы установить начальную позицию мяча при входе в доску.

Авторы нового исследования предлагают альтернативный взгляд: после определенного количества столкновений будущее мяча действительно случайно, даже в принципе, и не из-за ограничений наших измерительных приборов.

При каждом попадании в столбик мяч имеет определенную склонность к отскоку справа или слева, и этот выбор не определяется априори (не известен заранее). Для первых нескольких попаданий путь может быть определен с уверенностью, то есть склонность составляет 100% для одной стороны и 0% для другой.

Однако после определенного количества выводов выбор не предопределен, и склонность постепенно достигает 50% для правого направления и 50% для левого для удаленных выводов. Таким образом, можно считать, что каждая цифра длины нашего стола определяется процессом, аналогичным выбору движения влево или вправо при каждом ударе маленького шарика. Поэтому после определенного количества цифр длина больше не определяется.

Таким образом, новая модель, введенная исследователями, отказывается от обычного приписывания физического значения математическим действительным числам (числам с бесконечными заранее определенными цифрами).

Вместо этого говорится, что после определенного числа цифр их значения становятся действительно случайными, и только склонность к определенному значению четко определена. Это приводит к новому пониманию отношений между классической и квантовой физикой.

Фактически, когда, как и при каких обстоятельствах неопределенное количество принимает определенное значение, является общеизвестным вопросом в основах квантовой физики, известной как проблема квантовых измерений.

Это связано с тем, что в квантовом мире невозможно наблюдать реальность, не меняя ее. Фактически, значение измерения на квантовом объекте еще не установлено, пока наблюдатель фактически не измерит его.

Новое исследование, с другой стороны, указывает на то, что тот же самый вопрос всегда мог быть скрыт за успокаивающими правилами классической физики.

Flavio Del Santo et al. Physics without determinism: Alternative interpretations of classical physics, Physical Review A (2019). DOI: 10.1103/PhysRevA.100.062107

Источник

Детерминизм vs. квантовая механика, или можно ли предсказывать будущее

Это статья о том, совместима ли детерминистическая картина мира с квантовой механикой, откуда в ней появляется фундаментальный рандом, как это должно влиять на наше мировосприятие, а также можно ли (гипотетически) достаточно точно моделировать будущее, хотя бы в терминах вероятностей (спойлер: вероятно, нет).

Если вопрос о том, почему квантмех практически несовместим с детерминизмом, кажется вам слишком простым, можете сразу переходить к последнему разделу статьи – про то, что существуют системы, которые невозможно описать даже вероятностно.

Что такое детерминизм, и как он связан с предсказыванием будущего и свободой воли

Все ли явления имеют причину в прошлом? Определяется ли наше текущее состояние состоянием в предыдущий момент? Если ваш ответ “да”, то вы детерминист.

Детерминизм напрямую следует из классической физики, в соответствии с которой, зная состояние системы в начальный момент времени, можно однозначно предсказать ее состояние в следующий момент – для этого нужно знать только начальные условия и законы физики.

Простой пример: возьмем математический маятник. Если мы знаем, в каком положении он находился в какой-то момент и знаем его скорость, а также знаем все силы, которые на него действуют (сила тяжести, натяжения нити, сопротивления воздуха), то можно записать второй закон Ньютона и получить дифференциальное уравнение с известными начальными условиями. Решив его, мы найдем положение маятника в любой момент времени. То же самое верно не только для маятника, но и для любой физической системы (не обязательно чисто механической).

Казалось бы, это все очевидно. Но давайте рассмотрим примеры посложнее, чем математический маятник. Можно ли предсказать положение всех атомов воздуха в комнате, если каким-то образом узнать их точное положение в некоторый момент? А предсказать, как будет расти дерево из семечки – построить точные траектории роста его веток и листиков? А определить наше собственное состояние, например, через год, зная наше состояние сейчас и состояние мира в данный момент?

Естественно, сейчас не существует компьютера, способного выполнить такие вычисления, и я рассматриваю лишь теоретическую возможность. Было бы это возможно, если бы у нас был сколь угодно мощный физически реализуемый компьютер?

Детерминизм утверждает, что такие вычисления возможны, и мы могли бы предсказать наше настроение, желания и действия в любой последующий момент времени, зная текущее состояние.

Но что же тогда со свободой воли? Мы субъективно ощущаем, что в одинаковых условиях способны принять разные решения. Например, мы чувствуем, что мы выбираем, согласиться ли на предложение о работе, и ощущаем, что возможно как принять его, так и отказаться. Но если детерминизм верен, то это ощущение – иллюзия: на самом деле мы способны “выбрать” только один вариант, который определяется нашим состоянием в предыдущий момент времени. Если мы верим, что сознание – результат работы мозга, и что поведение нейронов описывается законами классической физики, то по-другому это просто не может работать.

Все действительно было бы так легко, если бы не квантовая механика, которая вносит некоторые сомнения в описанную выше картину мира.

Причем тут квантовая механика

Дело в том, что в квантовой физике есть фундаментальный рандом, делающий невозможным детерминистическое описание мира, и связан он прежде всего с процессом измерения. Чтобы разобраться в этом, сначала нужно хотя бы в общих чертах понять, как работает квантовая механика.

Основным постулатом квантовой механики является то, что у частицы есть какое-то состояние и оно описывается волновой функцией. Из волновой функции можно получить информацию лишь о вероятностях получить некоторый результат измерения.

Таким образом, квантовая механика позволяет оперировать только вероятностями. Мы никогда не можем получить полную информацию о направлении спина электрона и предсказать результат измерения. Это кардинально отличается от ситуации с математическим маятником, где мы уверены, что результат измерения будет соответствовать предсказанию уравнений динамики.

Возможен ли детерминизм в квантмехе? Теорема Белла и скрытые параметры

Здесь возникает вопрос: а вдруг на самом деле квантовая механика – лишь приближенная модель, отражающая то, что наши измерительные приборы неидеальны, и на самом деле мы можем измерить проекцию спина электрона точно, а не вероятностно, просто пока не придумали, как?

Такие рассуждения называются теориями скрытых параметров, и так рассуждал Эйнштейн. Он считал, что квантмех – просто не очень хорошая теория, потому что не может полностью описать состояние системы и предсказать результаты измерений. Примерно это он имел в виду, когда говорил, что бог не играет в кости.

Попробуем разобраться, имеет ли такая точка зрения отношение к реальности.

Эйнштейн, Подольский и Розен придумали эксперимент, который часто называют ЭПР-парадоксом. Они считали, что он нарушает принцип неопределенности.

Эксперимент заключается в следующем. Пусть мы создали две частицы (например, электрона) таким образом, что их полный спин равен 0. Такие частицы называются квантово запутанными – это значит, что информация только об одной частицы не позволяет полностью описать ее состояние и нужно учитывать связь между ними. Назовем частицы “1” и “2”. Измерим направление спина частицы “1” вдоль оси Х. Т.к. полный спин равен 0, то мы сразу узнаем направление спина частицы “2” вдоль Х. Этим измерением мы разрушили состояние частицы “1”, а частицу “2” не трогали вообще, то есть ее состояние мы не разрушили. Теперь измерим состояние второй частицы вдоль оси Y. Опять же, т.к. полный спин 0, мы сразу знаем, что направление спина другой частицы противоположно. Получается, что мы измерили точно проекцию спина частицы на обе оси. Но это противоречит принципу неопределенности! В этом заключается как бы парадокс.

Важно отметить, что это является парадоксом, только если выполняются предположения о локальности и реализме. То есть, на самом деле, парадокса можно избежать, если верно хотя бы одно из следующих утверждений:

Реального направления спина не существует до измерения, существует только вероятность обнаружить частицу с определенной проекцией спина. То есть, мы измерили проекцию спина на Х для “1” и его проекция на Х стала определена для обеих частиц. Направления на Y при этом объективно не существует. Потом мы измерили направление на Y, и тогда направление на Х уже не существует, мы не знаем его точно, принцип неопределенности не нарушается.

Частица “1” может менять состояние частицы “2” мгновенно, то есть с бесконечно большой скоростью, быстрее скорости света.

Теперь вопрос: как бы нам понять, выполняются ли условия локальности и реализма? Долгое время казалось, что это чисто философский вопрос и к науке он отношения не имеет, т.к. локальность и реализм – нефальсифицируемые вещи. Но потом Джон Белл вывел неравенство, названное неравенством Белла. В случае, если локальные (то есть не влияющие друг на друга быстрее скорости света) скрытые параметры существуют, предсказания квантовой механики не будут работать для некоторых случаев и неравенство Белла будет выполняться. Если же скрытых параметров нет, то неравенства Белла будут нарушаться.

Оказалось, что выполнение или нарушение этого неравенства можно проверить экспериментально, т.е. наличие или отсутствие скрытых параметров дает проверяемые предсказания. Было проведено много экспериментов на эту тему и выяснилось, что неравенство Белла действительно нарушается, то есть наш мир либо нелокален, либо этих параметров правда не существует до измерения, либо и то, и то.

Таким образом, в соответствии с неравенством Белла, детерминизм (т.е. объективные значения скрытых параметров, которые, может быть, можно описать так, что они зависят от предыдущего состояния системы) в квантовой механике возможен, но только если значения скрытых параметров могут меняться быстрее скорости света.

Допущение, что возможно взаимодействие быстрее света, уже выглядит не очень обоснованным – по крайней мере, пока никто такого в природе не наблюдал, и нет ни одной другой физической теории, в которой бы были такие явления. Но предположим, что это все же возможно, и попробуем подумать, как можно “спасти” детерминистический взгляд на мир в таких условиях.

Попытки спасти детерминизм: интерпретации квантовой механики

Здесь на помощь приходят различные интерпретации квантовой механики. Необходимость интерпретировать квантмех по-разному исходит в том числе из так называемой проблемы измерения. Как ни странно, до сих пор не очень понятно, как так получается, что в результате измерения мы видим только какое-то одно состояние и не можем наблюдать суперпозицию. Сейчас у научного сообщества нет ответа на вопрос о том, в какой именно момент суперпозиция “ломается”. Что точно ясно – это то, что в момент измерения происходит связывание измеряемого объекта и внешней среды (например, прибора). Этот процесс называется декогеренцией.

В наиболее популярной интерпретации, называющейся Копенгагенской, считается, что в момент измерения происходит коллапс волновой функции, переводящий ее в одно из собственных состояний – можно сказать, что именно в этот момент выбирается случайный результат измерения. Но как именно происходит этот коллапс – интерпретация не уточняет.

Другая интерпретация, не включая коллапс – это интерпретация волны-пилота. Она утверждает, что спина электрона не существует заранее, и это лишь свойство, появляющееся из взаимодействия электрона с измеряемым прибором. Но в этой интерпретации много необоснованных допущений, и поэтому в научном сообществе она не пользуется популярностью.

В любом случае, даже если какая-то из детерминистических интерпретаций верна (что совсем не факт), с точки зрения наблюдателя это ничего не меняет – квантовая механика по-прежнему дает нам возможность предсказывать лишь вероятности, независимо от того, как мы ее интерпретируем. В многомировой интерпретации мы не знаем заранее, в какой ветви вселенной мы будем субъективно себя осознавать, а в интерпретации волны-пилота – как система провзаимодействует с прибором. С точки зрения наблюдателя рандом продолжает существовать.

Сложность предсказывания вероятностей

В этом разделе я называю вероятностями квантовомеханические вероятности, которые, вероятно, не выражают степень нашего незнания, а являются объективными характеристиками системы. Я не использую слово «вероятность» в Байесовском смысле.

Короткий ответ – да, законами физики не запрещено хорошо предсказывать вероятности. Для этого скорее всего понадобится квантовый компьютер, потому что классические компьютеры очень неэффективны в моделировании квантовых систем. Но здесь возникают некоторые практические сложности, которые могут быть принципиально непреодолимы.

Одна из проблем заключается в том, что для моделирования системы нужно знать ее начальные условия. В случае квантовой механики это означает, что нужно знать исходное состояние волновой функции. В некоторых случаях это легко: например, не составляет проблемы создать фотон или электрон в некотором состоянии, в котором известны все параметры его волновой функции.

Проблемы возникают в следующих случаях:

Если мы не можем создать бесконечное число копий системы (как мы можем сделать с фотонами и электронами), потому что не знаем, как это делать. Если у нас есть только одна копия системы, то мы в принципе не можем измерить все ее параметры, потому что измерения разрушат ее состояние (вспоминаем электрон, у которого нельзя знать проекцию спина на все 3 оси сразу). Пример такой системы – волновая функция вселенной в момент большого взрыва. Даже если окажется, что это простая функция с небольшим числом параметров, у нас нет возможности узнать, чему равны их значения.

Если система достаточно большая, чтобы у нас не хватило памяти для того, чтобы записать ее состояние. Например, пусть мы создали квантовый процессор, в котором 100 кубитов (т.е. элементарных вычислительных ячеек – ими могут быть, например, те же спины электронов, или специальные системы из сверхпроводников). Пусть мы привели процессор в некоторое состояние, которое определяется квантовыми флуктуациями, и хотим его измерить. Тогда наша цель – записать волновую функцию системы из 100 связанных кубитов, а она описывается 2 100 комплексными числами. Чтобы записать эти числа с точностью хотя бы 2 знаков после запятой, на каждое число понадобится около 20 бит. Тогда для записи всех этих чисел понадобится примерно 3*10 9 Зеттабайт. Это примерно в 47 миллионов раз больше, чем все данные, сгенерированные на планете Земля в 2020 году. А если кубитов будет уже не 100, а 300, и мы будем считать, что способны записать одно комплексное число в любой атом, то атомов во вселенной не хватит, чтобы записать состояние такой системы.

Таким образом, иногда невозможно не только предсказать поведение системы, но даже придумать способ, которым было бы физически возможно оценить вероятности результатов измерений. Ведь для этого нужно решить систему уравнений с заданными начальными условиями, а их узнать невозможно. Такая степень неопределенности называется Найтовской неопределенностью (Knightian uncertainty).

Но мы хотя бы можем вероятностно предсказывать поведение каких-то изолированных систем, в которых известно начальное состояние и которые мало зависят от состояния вселенной при большом взрыве? Ответ, конечно, да: сейчас физики успешно моделируют химические реакции, цепочки спинов электронов и другие несложные системы. Также физически возможно моделировать, например, свойства новых материалов или формирование белковых структур. Но полезно понимать, что у нашей способности предсказывать будущее есть очень серьезные ограничения.

Кстати, если мир недетерминистичен, что там с вопросом о свободе воли? Значит ли это, что у нас есть возможность делать свободный выбор? К сожалению, все снова не так легко. Дело в том, что квантовые эффекты, вероятно, никак не влияют на наш мозг, а, значит, он описывается классической физикой, которая вполне себе детерминирована. Конечно, на нас могут влиять квантовые флуктуации, но они, скорее всего, лишь играют роль шума, вносимого в измерения, и не имеют ничего общего с процессом принятия решений. Но это уже тема, заслуживающая отдельной статьи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *