что такое дата инженер

Кто такой Data Engineer и как им стать

Сделали адаптированный перевод статьи Oleksii Kharkovyna о том, кто такие инженеры данных и что нужно знать новичкам, чтобы освоить профессию.

Инженер данных — смесь аналитика данных и дата-сайентиста. Он отвечает за извлечение, преобразование, загрузку данных и их обработку. Профессия востребована в первую очередь благодаря высоким зарплатам и спросу среди работодателей. Дальше расскажу, какие задачи выполняют инженеры данных, чем отличаются от дата-сайентистов и что нужно знать тем, кто хочет освоить специальность.

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Что такое инженерия данных

«Учёный может открыть новую звезду, но не может создать её. Для этого ему пришлось бы обратиться к инженеру», — Гордон Линдсей Глегг

Из названия специальности следует, что она связана с данными: их доставкой, хранением и обработкой. Главная задача инженера — подготовить надёжную инфраструктуру для данных. В ИИ-иерархии потребностей инженерия данных занимает первые две-три ступени: сбор, перемещение и хранение, подготовка данных.

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Что делает инженер данных

С появлением Big Data сфера ответственности специалистов по обработке данных изменилась. Если раньше инженеры писали большие SQL-запросы и обрабатывали данные с помощью таких инструментов, как Informatica ETL, Pentaho ETL, Talend, то теперь от них ждут большего. Специалисту нужно отлично знать SQL и Python, желательно — Java/Scala, иметь опыт работы с облачными платформами, в частности Amazon Web Services.

И это только самое необходимое. Логично предположить, что инженеры должны разбираться в разработке программного обеспечения и серверной разработке. В компании, которая генерирует большой объем данных из разных источников, задача инженера — организовать сбор информации, её обработку и хранение.

Инструменты могут отличаться — всё зависит от объема данных, их скорости поступления и неоднородности. Многие компании вообще не работают с большими данными, поэтому в качестве централизованного хранилища используют базу SQL (PostgreSQL, MySQL) с небольшим количеством скриптов, которые направляют данные в репозиторий.

У IT-гигантов вроде Google, Amazon, Facebook или Dropbox требования к кандидатам выше:

Основной упор в технологиях Big Data сейчас делают на их обработку в условиях высокой нагрузки. Поэтому компании повысили требования к отказоустойчивости системы.

Источник

Кто такие дата-инженеры, и как ими становятся?

И снова здравствуйте! Заголовок статьи говорит сам о себе. В преддверии старта курса «Data Engineer» предлагаем разобраться в том, кто же такие дата-инженеры. В статье очень много полезных ссылок. Приятного прочтения.

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Простое руководство о том, как поймать волну Data Engineering и не дать ей затянуть вас в пучину.

Складывается впечатление, что в наши дни каждый хочет стать дата-саентистом (Data Scientist). Но как насчет Data Engineering (инжиниринга данных)? По сути, это своего рода гибрид дата-аналитика и дата-саентиста; дата-инженер обычно отвечает за управление рабочими процессами, конвейерами обработки и ETL-процессами. Ввиду важности этих функций, в настоящее время это очередной популярный профессиональный жаргонизм, который активно набирает обороты.

Высокая зарплата и огромный спрос — это лишь малая часть того, что делает эту работу чрезвычайно привлекательной! Если вы хотите пополнить ряды героев, никогда не поздно начать учиться. В этом посте я собрал всю необходимую информацию, чтобы помочь вам сделать первые шаги.

Итак, начнем!

Что такое Data Engineering?

Честно говоря, нет лучшего объяснения, чем это:

«Ученый может открыть новую звезду, но не может ее создать. Ему придется просить инженера сделать это за него.»

–Гордон Линдсей Глегг

Таким образом, роль дата-инженера достаточно весома.

Из названия следует, что инженерия данных связана с данными, а именно с их доставкой, хранением и обработкой. Соответственно, основная задача инженеров — обеспечить надежную инфраструктуру для данных. Если мы посмотрим на ИИ-иерархию потребностей, инженерия данных занимает первые 2–3 этапа: сбор, перемещение и хранение, подготовка данных.

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Чем занимается инженер данных?

С появлением больших данных сфера ответственности резко изменилась. Если раньше эти эксперты писали большие SQL-запросы и перегоняли данные с помощью таких инструментов, как Informatica ETL, Pentaho ETL, Talend, то теперь требования к дата-инженерам повысились.

Большинство компаний с открытыми вакансиями на должность дата-инженера предъявляют следующие требования:

Список используемых в этом случае инструментов может отличаться, все зависит от объема этих данных, скорости их поступления и неоднородности. Большинство компаний вообще не сталкиваются с большими данными, поэтому в качестве централизованного хранилища, так называемого хранилища данных, можно использовать базу данных SQL (PostgreSQL, MySQL и т. д.) с небольшим набором скриптов, которые направляют данные в хранилище.

IT-гиганты, такие как Google, Amazon, Facebook или Dropbox, предъявляют более высокие требования: знание Python, Java или Scala.

Дата-инженеры Vs. дата-саентисты

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер
Ладно, это было простое и забавное сравнение (ничего личного), но на самом деле все намного сложнее.

Во-первых, вы должны знать, что существует достаточно много неясности в разграничении ролей и навыков дата-саентиста и дата-инженера. То есть, вы легко можете быть озадачены тем, какие все-таки навыки необходимы для успешного дата-инженера. Конечно, есть определенные навыки, которые накладываются на обе роли. Но также есть целый ряд диаметрально противоположных навыков.

Наука о данных — это серьезное дело, но мы движется к миру с функциональной дата саенс, где практикующие способны делать свою собственную аналитику. Чтобы задействовать конвейеры данных и интегрированные структуры данных, вам нужны инженеры данных, а не ученые.

Является ли дата-инженер более востребованным, чем дата-саентист?

— Да, потому что прежде чем вы сможете приготовить морковный пирог, вам нужно сначала собрать, очистить и запастись морковью!

Дата-инженер разбирается в программировании лучше, чем любой дата-саентист, но когда дело доходит до статистики, все с точностью до наоборот.

Но вот преимущество дата-инженера: без него/нее ценность модели-прототипа, чаще всего состоящей из фрагмента кода ужасного качества в файле Python, полученной от дата-саентиста и каким-то образом дающей результат, стремится к нулю.

Без дата-инженера этот код никогда не станет проектом, и никакая бизнес-проблема не будет эффективно решена. Инженер данных пытается превратить это все в продукт.

Основные сведения, которые должен знать дата-инженер

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Итак, если эта работа пробуждает в вас свет и вы полны энтузиазма — вы способны научиться этому, вы можете овладеть всеми необходимыми навыками и стать настоящей рок-звездой в области разработки данных. И, да, вы можете осуществить это даже без навыков программирования или других технических знаний. Это сложно, но возможно!

Каковы первые шаги?

Вы должны иметь общее представление о том, что есть что.

Прежде всего, Data Engineering относится к информатике. Конкретне — вы должны понимать эффективные алгоритмы и структуры данных. Во-вторых, поскольку дата-инженеры работают с данными, необходимо понимание принципов работы баз данных и структур, лежащих в их основе.

Например, обычные B-tree SQL базы данных основаны на структуре данных B-Tree, а также, в современных распределенных репозиториях, LSM-Tree и других модификациях хеш-таблиц.

* Эти шаги основаны на замечательной статье Адиля Хаштамова. Итак, если вы знаете русский язык, поддержите этого автора и прочитайте его пост.

1. Алгоритмы и структуры данных

Использование правильной структуры данных может значительно улучшить производительность алгоритма. В идеале, мы все должны изучать структуры данных и алгоритмы в наших школах, но это редко когда-либо освещается. Во всяком случае, ознакомится никогда не поздно.
Итак, вот мои любимые бесплатные курсы для изучения структур данных и алгоритмов:

Вся наша жизнь — это данные. И для того, чтобы извлечь эти данные из базы данных, вам нужно «говорить» с ними на одном языке.

SQL (Structured Query Language — язык структурированных запросов) является языком общения в области данных. Независимо от того, что кто-то говорит, SQL жил, жив и будет жить еще очень долго.

Если вы долгое время находились в разработке, вы, вероятно, заметили, что слухи о скорой смерти SQL появляются периодически. Язык был разработан в начале 70-х годов и до сих пор пользуется огромной популярностью среди аналитиков, разработчиков и просто энтузиастов.
Без знания SQL в инженерии данных делать нечего, так как вам неизбежно придется создавать запросы для извлечения данных. Все современные хранилища больших данных поддерживают SQL:

Для анализа большого слоя данных, хранящихся в распределенных системах, таких как HDFS, были изобретены механизмы SQL: Apache Hive, Impala и т. д. Видите, он не собирается никуда уходить.

Как выучить SQL? Просто делай это на практике.

Для этого я бы порекомендовал ознакомиться с отличным учебником, который, кстати, бесплатный, от Mode Analytics.

3. Программирование на Python и Java/Scala

Почему стоит изучать язык программирования Python, я уже писал в статье Python vs R. Выбор лучшего инструмента для AI, ML и Data Science. Что касается Java и Scala, большинство инструментов для хранения и обработки огромных объемов данных написаны на этих языках. Например:

Чтобы погрузиться в язык Scala, вы можете прочитать Программирование в Scala от автора языка. Также компания Twitter опубликовала хорошее вводное руководство — Scala School.

Что касается Python, я считаю Fluent Python лучшей книгой среднего уровня.

4. Инструменты для работы с большими данными

Вот список самых популярных инструментов в мире больших данных:

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Знание хотя бы одной облачной платформы находится в списке базовых требований, предъявляемым к соискателям на должность дата-инженера. Работодатели отдают предпочтение Amazon Web Services, на втором месте — облачная платформа Google, и замыкает тройку лидер ов Microsoft Azure.

Вы должны хорошо ориентироваться в Amazon EC2, AWS Lambda, Amazon S3, DynamoDB.

6. Распределенные системы

Работа с большими данными подразумевает наличие кластеров независимо работающих компьютеров, связь между которыми осуществляется по сети. Чем больше кластер, тем больше вероятность отказа его узлов-членов. Чтобы стать крутым экспертом в области данных, вам необходимо вникнуть в проблемы и существующие решения для распределенных систем. Эта область старая и сложная.

Эндрю Таненбаум считается пионером в этой области. Для тех, кто не боится теории, я рекомендую его книгу «Распределенные системы», для начинающих она может показаться сложной, но это действительно поможет вам отточить свои навыки.

Я считаю «Проектирование приложений с интенсивным использованием данных» под авторством Мартина Клеппманна лучшей вводной книгой. Кстати, у Мартина есть замечательный блог. Его работа поможет систематизировать знания о построении современной инфраструктуры для хранения и обработки больших данных.

Для тех, кто любит смотреть видео, на Youtube есть курс Распределенные компьютерные системы.

7. Конвейеры данных

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Конвейеры данных — это то, без чего вы не можете жить в качестве дата-инженера.

Большую часть времени дата-инженер строит так называемую пайплайн дату, то есть создает процесс доставки данных из одного места в другое. Это могут быть пользовательские сценарии, которые идут к API внешнего сервиса или делают SQL-запрос, дополняют данные и помещают их в централизованное хранилище (хранилище данных) или хранилище неструктурированных данных (озера данных).

Подводя итог: основной чеклист дата-инженера

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Подытожим — необходимо хорошее понимание следующего:

И, наконец, последнее, но очень важное, что я хочу сказать.

Путь становления Data Engineering не так прост, как может показаться. Он не прощает, фрустрирует, и вы должны быть готовы к этому. Некоторые моменты в этом путешествии могут подтолкнуть вас все бросить. Но это настоящий труд и учебный процесс.

Просто не приукрашивайте его с самого начала. Весь смысл путешествия в том, чтобы узнать как можно больше и быть готовым к новым вызовам.

Вот отличная картинка, с которой я столкнулся, которая хорошо иллюстрирует этот момент:

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

И да, не забудьте избегать выгорания и отдыхать. Это тоже очень важно. Удачи!

Как вам статья, друзья? Приглашаем на бесплатный вебинар, который состоится уже сегодня в 20.00. В рамках вебинара обсудим, как построить эффективную и масштабируемую систему обработки данных для небольшой компании или стартапа с минимальными затратами. В качестве практики познакомимся с инструментами обработки данных Google Cloud. До встречи!

Источник

Дата-инженеры в бизнесе: кто они и чем занимаются?

Данные — один из активов организации. Поэтому вполне вероятно, что перед вашей командой в какой-то момент могут возникнуть задачи, которые можно будет решить, используя эти данные разными способами, начиная с простых исследований и вплоть до применения алгоритмов машинного обучения.

И хоть построение крутой модели — неотъемлемо важная часть, но все же это не залог успеха в решении подобных задач. Качество модели в большой степени зависит от качества данных, которые собираются для нее. И если Data Science применяется не ради спортивного интереса, а для удовлетворения реальных потребностей компании, то на это качество можно повлиять на этапе сбора и обогащения данных. И за это отвечает скорее не дата-сайентист, а другой специалист — дата-инженер.

В этой статье я хочу рассказать о роли дата-инженера в проектах, связанных с построением моделей машинного обучения, о зоне его ответственности и влиянии на результат. Разбираемся на примере Яндекс.Денег.

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Какие роли есть в Data Science-проекте?

К сожалению, не для всех названий ролей есть аналоги в русском языке. Если у вас в компании есть устоявшееся русское название, например, для Data Ingest, то поделитесь им в комментариях.

Например, можно выделить следующие роли:

Что такое Data Science-проект?

Это ситуация, когда мы пытаемся решить какую-то задачу при помощи данных. То есть во-первых, эта задача должна быть сформулирована. Например, один из наших проектов начался с того, что нам нужно было распознавать аварии в приеме платежей (далее распознавание аварий будет упоминаться как исходная задача).

Во-вторых, должен быть набор конкретных данных, датасет, на котором мы будем пытаться ее решать. Например, есть список операций. Из него можно построить график количества операций по каким-нибудь временным периодам, например, часам:

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Сам график с количеством не требует дата-сайенса, но уже требует дата-инженерии.

Не будем забывать, что помимо простых показателей, таких как количество, показатели, которые нас интересуют, могут быть достаточно сложными в получении: например, количество уникальных пользователей или факт наличия аварии в магазине-партнере (который достоверно определять силами человеческого мониторинга весьма дорого).

При этом данных с самого начала может быть много либо их в какой-то момент внезапно становится много, а в реальной жизни — они еще и продолжают непрерывно копиться даже после того, как мы сформировали для анализа какой-то датасет.

Как, наверное, для любой проблемы сначала стоит посмотреть, есть ли на рынке готовые решения. И во многих случаях окажется, что они есть. Например, существуют системы, которые умеют детектить простои тем или иным способом. Однако та же Moira не справлялась полностью с нашими проблемами (из коробки она ориентируется на статические правила — которыми задать наши условия достаточно сложно). Поэтому мы решили писать классификатор самостоятельно.

И дальше в статье рассматриваются те случаи, когда нет готового решения, которое полностью бы удовлетворяло возникшим потребностям, или если даже оно есть, то мы не знаем о нем или оно нам недоступно.

В этот момент из инженерной области, где что-то разрабатываем, мы переходим в RnD-область, где пытаемся изобрести алгоритм или механизм, который будет работать на наших данных.

Порядок действий в DS-проекте

Давайте посмотрим, как это выглядит в реальной жизни. Дата-сайентический проект состоит из следующих этапов:

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер
В проектах, которыми мы занимались, один такой круг занимал по времени около 1,5-2 недель.

Дата-сайентист точно участвует на этапе построения модели и при оценке результата. Все остальные этапы чаще ложатся на плечи дата-инженера.

Теперь рассмотрим этот процесс подробнее.

Сбор датасета

Как мы сказали, без набора данных бессмысленно начинать любой Data Science. Давайте посмотрим, из каких данных получился график с количеством платежей.

В нашей компании применяется микросервисная архитектура, и в ней для дата-инженера наиболее важный момент, что нужные данные еще нигде не собраны воедино. Каждый микросервис льет свои события в брокер, в нашем случае Kafka, ETL оттуда их забирает, кладет в DWH, откуда их забирают модели.

Каждый микросервис знает только свой кусочек: один компонент знает про авторизацию, другой — про реквизиты и так далее. Задача дата-инженера — эти данные собрать в одном месте и объединить их друг с другом, чтобы получился необходимый датасет.

В реальной жизни микросервисы появились неспроста: такой атомарной операции, как платеж, не существует. У нас даже есть такое внутреннее понятие, как процесс платежа — последовательность операций для его выполнения. Например, в эту последовательность могут входить следующие операции:

Действия могут быть как явно существующими в этом процессе, так и суррогатными (расчетными).

И в нашем примере мы решили, что нам будет достаточно знать два следующих шага:

На этом этапе собранные данные уже могут представлять ценность не только для главной задачи. В нашем примере уже здесь без применения ML можно брать количество процессов, прошедших каждый из этих шагов, поделить друг на друга и рассчитывать таким образом success rate.

Но если вернуться к главной задаче, то после того, как мы решили выделить эти два события, следует научиться извлекать данные из этих событий и куда-то их складывать.

На этом этапе важно помнить, что большинство моделей классификаций на входе принимает матрицу признаков (набор m чисел и n столбцов). А события, которые мы получаем, например, из Kafka, — это текст, а не числа, и из этого текста матрицу не составишь. Поэтому изначально текстовые записи нужно преобразовать в числовые значения.

Составление корректного датасета состоит из следующих этапов:

Например, в поле «дата» появился платеж 1970 года, и такую запись, скорее всего, не следует учитывать (если мы в принципе хотим использовать время как признак).

Это можно делать разными способами. Например, полностью исключить строки с неправильными значениями. Это хорошо работает, но могут потеряться остальные данные из этих строк, хотя они могут быть вполне полезными. Или, другой вариант — сделать что-то с неправильными значениями, не трогая остальные поля в этой строчке. Например, заменить на среднее или мат. ожидание по этому полю или вовсе обнулить. В каждом случае принять решение должен человек (дата-сайентист или дата-инженер).

Следующий шаг — разметка. Это тот момент, когда мы помечаем аварии как «аварии». Очень часто это самый дорогостоящий этап в сборе датасета.

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер
Предполагается, что изначально мы знаем откуда-нибудь про аварии. Например, операции идут, затем их количество резко падает (как на картинке выше), а потом они восстанавливаются снова, и кто-то нам говорит: «Вот там и была авария». А дальше нам хочется автоматически находить идентичные кейсы.

Интереснее ситуация, когда операции прекращаются не полностью, а только частично (количество операций не падает до нуля). В этом суть детектинга — отслеживать изменение структуры исследуемых данных, а не их полное отсутствие.

Возможные неточности разметки приводят к тому, что классификатор будет ошибаться. Почему? Например, у нас есть две аварии, а размечена только одна из них. Соответственно, вторую аварию классификатор будет воспринимать как нормальное поведение и не рассматривать как аварию.

В нашем случае мы специально собираем вручную историю аварий, которую потом мы используем в разметке.

В итоге после серий экспериментов одним из решений задачи поиска простоев получился следующий алгоритм:

И не стоит забывать про последний пункт — актуализацию данных. Особенно если проект длинный, готовится несколько недель или месяцев, датасет может устареть. И важно, когда весь пайплайн готов, обновить информацию — выгрузить данные за новый период. Именно в этот момент становится важна роль дата-инженера как автоматизатора, чтобы все предыдущие шаги можно было дешево повторить на новых данных.

Только после этого дата-инженер передает эстафету (вместе с датасетом) дата-сайентисту.

А дальше.

Что же делает дата-сайентист?

Предполагаем, что проблема у нас сформулирована, дальше дата-сайентисту ее нужно решить.

В этой статье я не буду детально затрагивать вопрос выбора модели. Но для тех, кто только начинает работать с ML, отмечу, что есть множество подходов к выбору модели.

Если путем настройки гиперпараметров дата-сайентисту не удалось добиться хорошего качества работы выбранной модели, то нужно выбрать другую модель либо обогатить датасет новыми фичами — значит, требуется пойти на следующий круг и вернуться на этап расчета фич или еще раньше — на этап сбора данных. Угадайте, кто это будет делать?

Предположим, что модель выбрана, отскорена, дата-инженеры оценивают результат и получают обратную связь. Заканчивается ли на этом их работа? Конечно, нет. Приведем примеры.

Сначала немного лирического отступления. Когда я учился в школе, учительница любила спрашивать:
— А если все спрыгнут с крыши, ты тоже спрыгнешь?
Спустя какое-то время я узнал, что для этой фразы есть стандартный ответ:
— Ну… вам же никто не мешает говорить фразу, которую все говорят.

Однако после изобретения машинного обучения ответ может стать более предсказуемым:

— А если все спрыгнут с крыши, ты тоже спрыгнешь?
[изобретено машинное обучение]
— Да!

Такая проблема возникает, когда модель ловит не ту зависимость, которая существует в реальной жизни, а ту, которая характерна только для собранных данных.

Причина, по которой модель ловит не те зависимости, которые есть в реальной жизни, могут быть связаны с переобучением либо со смещением в анализируемых данных.
И если с переобучением дата-сайентист может побороться самостоятельно, то задача дата-инженера в том, чтобы найти и подготовить данные без смещения.

Но кроме смещения и переобучения могут возникнуть и другие проблемы.

Например, когда после сбора данных мы пытаемся на них обучиться, а потом выясняется, что один из магазинов (где проходят платежи), выглядит вот так:

что такое дата инженер. Смотреть фото что такое дата инженер. Смотреть картинку что такое дата инженер. Картинка про что такое дата инженер. Фото что такое дата инженер

Вот такие у него операции, и все другие наши размышления про падения количества операций, как признака аварии, просто бессмысленны, так как в данном примере есть периоды, где платежей нет совсем. И это нормальный период, тут нет ничего страшного. Что это для нас означает? Это как раз и есть тот случай, когда указанный выше алгоритм не работает.

На практике это частенько означает, что следует перейти к другой проблеме — не той, что мы изначально пытались решать. Например, что-то сделать до того момента, как мы начинаем искать аварии. В рассматриваемой задаче пришлось сначала привести кластеризацию магазинов по профилю: часто платящие, редко платящие, редко платящие со специфическим профилем и другие, но это уже другая история. Но важно, что это, в первую очередь, тоже задача для дата-инженера.

В итоге

Основной вывод, который можно сделать из рассказанного выше, что в реальных ML-проектах дата-инженер играет одну из важных ролей, а возможностей по решению бизнес-задач у него зачастую даже больше, чем у дата-сайентиста.

Если сейчас вы разработчик и хотите развиваться в направлении машинного обучения, то не сосредотачивайтесь исключительно на дата-сайенсе и обратите внимание на дата-инженерию.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *