что такое брус в технической механике
Брус (механика)
Брус (в механике материалов и конструкций) — модель тела, у которого один из размеров гораздо больше двух других. При расчётах брус заменяют его продольной осью. В строительной механике вместо термина «брус» в том же значении чаще используют термин стержень, который входит в состав общепринятого термина «стержневые системы».
К стержневым системам относятся фермы, рамы и многие другие. Термин же «брусчатые системы» в литературе не используется, за исключением характеристики срубного строения (дом из деревянных брусьев или бревен).
По виду деформации (нагрузки):
По геометрической форме:
По виду поперечного сечения:
По виду нагружения:
Литература
См. также
Другие расчётные модели деформируемого тела:
Полезное
Смотреть что такое «Брус (механика)» в других словарях:
Механика строительная — – наука о принципах и методах расчёта сооружений на прочность, жёсткость, устойчивость и колебания. Основные объекты изучения строительной механики плоские и пространственные стержневые системы и системы, состоящие из пластинок и оболочек.… … Энциклопедия терминов, определений и пояснений строительных материалов
Стержень (строительная механика) — У этого термина существуют и другие значения, см. Стержень. Стержень тело удлиненной формы, два размера которого (высота и ширина) малы по сравнению с третьим размером (длиной) [1] [2] В таком же значении иногда используют термин «брус», а… … Википедия
Физико-химическая механика — – раздел коллоидной химии, изучающий структурно – механические свойства дисперсных систем. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.] Рубрика термина: Общие термины Рубрики энциклопедии … Энциклопедия терминов, определений и пояснений строительных материалов
Ласточкин хвост (механика) — У этого термина существуют и другие значения, см. Ласточкин хвост … Википедия
Морские термины — Эта страница глоссарий. # А … Википедия
Бикгед — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы … Википедия
Бимсы — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы … Википедия
Водорез, или грен — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы … Википедия
Книпель — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы … Википедия
Кончебас — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы … Википедия
Тема 2.1 Основные понятия и допущения
Элементы сооружений отличаются друг от друга формами, размерами, материалом, функциональным назначением, рядом специальных требований. При этом следует отметить, что все без исключения элементы как искусственного, так и естественного происхождения обладают такими свойствами, как прочность и жесткость, то есть способностью, не разрушаясь воспринимать различные нагрузки и сопротивляться изменению своих первоначальных форм и размеров, без чего не может нормально функционировать сооружение. Цель расчетов в сопротивлении материалов – создание прочных, устойчивых, обладающих достаточной жесткостью, долговечностью и вместе с тем экономичных элементов сооружений
Например, конструкции стропильной фермы, междуэтажных перекрытий зданий должны выдерживать нагрузки от атмосферных воздействий, оборудования и людей и обладать достаточной жесткостью, обеспечивающей ограничение прогибов для создания нормальных условий функционирования сооружения.
Рис. 1. Характер деформирования и разрушения стержня под нагрузкой:
а) – элемент до нагружения; б) – деформация стержня при изгибе; в) – вид излома элемента при изгибе; г) – изгиб стержня при сжатии
Прочностные и жесткостные качества элементов сооружений зависят от многих факторов: материала, размеров, характера возникающих деформаций и др. Металлические конструкции обладают большей прочностью и жесткостью, чем аналогичные деревянные конструкции. Стержень из одного и того же материала, имеющий большие поперечные размеры, более прочный и жесткий, при этом его легче разрушить, изгибая, чем растягивая. Тонкий стержень при его сжатии разрушается в результате выпучивания в поперечном направлении, в то же время это явление отсутствует при продольном растяжении и для разрушения стержня требуется значительно большая нагрузка.
Например, возьмем деревянный брусок (рис.1, а). Начнем сгибать стержень. Чем сильнее мы будем прикладывать усилия, тем больше он изогнется (рис.1 б), и при какой то величине усилий сломается (рис.1, в). Подведя итог можно утверждать, что всякое реальное тело под воздействием сил меняет свою форму и размеры, т. е. деформируется. Деформации обуславливают появление внутри элемента сил сопротивления. Если внешние силы больше сил сопротивления, происходит разрушение элемента сооружения.
При возрастании нагрузки выше определенных значений в теле наряду с упругими будут возникать деформации не исчезающие после снятия нагрузки. Такие деформации называются остаточными. Возникновение остаточных деформаций, наравне с разрушением связано с нарушением нормальной работы конструкции и, как правило, недопустимо.
Способность конструкции воспринимать заданную нагрузку, не разрушаясь и без остаточных деформаций, называют прочностью.
Все элементы сооружения, из каких бы материалов они ни были изготовлены, под нагрузкой деформируются. Однако значительные деформации могут мешать нормальной эксплуатации сооружения.
Способность сооружений и ее частей под нагрузкой сохранять свои размеры и форму в установленных нормами пределах называется жесткостью.
Рассмотрим еще один пример. Будем сжимать тонкий и длинный стержень (тот же деревянный брусок). Уже при незначительной силе стержень изогнется, как показано на рис.1, г. В этом случае первоначальная форма прямолинейная форма равновесия стержня становится неустойчивой.
Способность конструкции, и ее частей, сохранять под нагрузкой первоначальную форму упругого равновесия называется устойчивостью. Обычно потеря устойчивости сопровождается мгновенным изменением формы элемента и разрушением конструкции.
Методами сопротивления материалов выполняются расчеты, на основании которых определяются необходимые размеры деталей машин и конструкций инженерных сооружений. Любая конструкция должна обладать надежностью при эксплуатации и быть экономичной.
Надежность – свойство конструкции выполнять заданные функции, сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение требуемого промежутка времени.
В сопротивлении материалов широко применяются методы теоретической механики и математического анализа, используются данные из разделов физики, изучающих свойства различных материалов, материаловедения и других наук. К тому же сопротивление материалов является наукой экспериментально-теоретической, так как она широко использует опытные данные и теоретические исследования.
ЗАДАНИЕ:
Что изучает раздел «Сопротивление материалов»?
Выписать определения: прочность, жесткость, устойчивость, надежность и экономичность.
§2. Реальный объект и расчетная схема
При выборе расчетной схемы вводятся упрощения (схематизация) реального объекта, т.е. отброс ить все те факторы, которые не могут сколько-нибудь заметным образом повлиять на работу системы в целом.
Такого рода упрощения задачи совершенно необходимы, так как решение с полным учетом всех свойств реального объекта является принципиально невозможным в силу их очевидной неисчерпаемости.
Основным упрощающим приемом в сопротивлении материалов является приведение геометрической формы тела к схемам бруса (стержня), оболочки или пластины. Как известно, любое тело в пространстве характеризуется тремя измерениями.
Рис. 2. Прямой брус (стержень) постоянного сечения
ЗАДАНИЕ:
У казать чем отличается расчетная схема от реального объекта.
Начертить стержень, изобразив его ось и поперечное сечение, записать определение стержня.
§3. Связи и опорные устройства
Для соединения отдельных частей конструкции между собой и передачи внешней нагрузки на основание на нее накладываются связи , ограничивающие перемещения тех точек сооружения, к которым они приложены. Связи могут ограничивать либо повороты точек сооружения, либо их линейные смещения, либо и то и другое.
Основным видом связей в расчетной схеме является шарнирная связь.
Все опорные связи условно делятся на три основных типа:
— Подвижная шарнирная опора (рис.3, а). Такая опора не препятствует вращению конца бруса и его перемещению вдоль плоскости качения. В ней может возникать только одна реакция, которая перпендикулярна плоскости качения и проходит через ось катка (R).
— Жесткая заделка или защемление (рис.3, в). Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре в общем случае может возникать реакция, которую обычно раскладывают на две составляющие (H и R) и момент защемления (М).
При рассмотрении реального объекта в число внешних сил включаются не только заданные нагрузки, но и реакции связей (опор), дополняющие систему сил до равновесного состояния.
§4. Внешние и внутренние силы. Метод сечений
Поверхностные силы приложены к участкам поверхности и являются результатом непосредственного контактного взаимодействия рассматриваемого объекта с окружающими телами (давление ветра, воды на стенку).
В зависимости от соотношения площади приложения нагрузки и общей площади поверхности рассматриваемого тела, поверхностные нагрузки подразделяются на сосредоточенные и распределенные.
Динамические нагрузки также подразделяются на периодические и случайные нагрузки. К случайным нагрузкам относятся нагрузки, действующие на детали автомобилей, тракторов, станков, а также нагрузки, действующие на сооружения (дома, мачты, краны и т.п.) от давления ветра, снега и т.п.
Временная нагрузка может сохранять более или менее постоянную величину в течение всего периода ее действия, а может непрерывно изменяться по некоторому закону; в последнем случае она называется переменной нагрузкой.
По отношению к выбранному материальному телу (элементу конструкции) все действующие силы подразделяются на внешние и внутренние силы. Под внешними силами (нагрузками) понимаются силы взаимодействия данного материального тела со всеми другими окружающими его телами.
Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами , которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия. Эти силы сопротивляются стремлению внешних сил разрушить элемент конструкции, изменить его форму, отделить одну часть от другой. Вообще внутренние силы возникают между всеми смежными частицами тела при нагружении.
ЗАДАНИЕ:
Составить таблицу «Виды нагрузок», в таблице дать характеристику каждому виду нагрузки.
Рис.4. Внутренние силовые факторы, возникающие при действии нагрузки
В зависимости от вида внутренних силовых факторов, возникающих в сечении, различают различные следующие виды нагружения бруса:
— Растяжение или сжатие. Действует только продольная сила N.
— Кручение. Действует только крутящий момент T.
— Сдвиг. Действует только поперечная сила Q x или Q y
— Изгиб. Действует только изгибающий момент M x или M y (чистый изгиб), при действии изгибающего момента и поперечной силы (поперечный изгиб).
— Сложное сопротивление. Одновременное действие нескольких силовых факторов. Например, M x и T, M и N.
Итак, внутренние усилия в сечении есть функции параметров, определяющих положение сечения в теле, и нагрузок по одну сторону от сечения. Эти функции могут быть представлены аналитически или графически. График, показывающий изменение внутреннего усилия в зависимости от положения сечения, называется эпюрой . Ординаты усилий в определенном масштабе откладывают от линии, соответствующей оси бруса.
ЗАДАНИЕ:
Начертить внутренние силовые факторы стержня(рис. 4), дать пояснение каждому символу на этой схеме и указать вид нагружения при котором возникают N , Q y и Q z , Т , M z и М у .
§5. Допущения, применяемые в сопротивлении материалов
Для построения теории сопротивления материалов принимают некоторые понятия и допущения относительно структуры и свойств материалов, а также о характере деформаций. Приведем основные из них.
1. В сопротивлении материалов принято рассматривать все материалы как однородную сплошную среду, независимо от их микроструктуры. Под однородностью материала понимают независимость его свойств от величины выделенного из тела объема. И хотя в действительности реальный материал, как правило, неоднороден (уже в силу его молекулярного строения), тем не менее, указанная особенность не является существенной, поскольку в сопротивлении материалов рассматриваются конструкции, размеры которых существенно превышают не только межатомные расстояния, но и размеры кристаллических зерен.
Металлы и сплавы, как правило, изотропны, так как большинство металлов имеет мелкозернистую структуру. Благодаря большому количеству кристаллов свойства материалов выравниваются в различных направлениях и можно считать эти материалы практически изотропными. В настоящее время широкое распространение получили анизотропные композиционные материалы, состоящие из двух компонентов – наполнителя и связующего. Наполнитель состоит из уложенных в определенном порядке высокопрочных нитей – матрицы, что и определяет значительную анизотропию композита. Композиционные материалы имеют высокую прочность при значительно меньшем, чем металлы весе.
Результат воздействия на тело системы сил равен сумме результатов воздействия тех же сил, прилагаемых к телу последовательно и в любом порядке (рис. 6). Под словами «результат воздействия» следует понимать – деформации, внутренние силы и перемещения отдельных точек.
Что такое брус в технической механике
Смотреть что такое «БРУС» в других словарях:
брус — брус/ … Морфемно-орфографический словарь
Брус — – пиломатериал толщиной и шириной 100 мм и более. [ГОСТ 18288 87] Брус – 1. Конструкционное тело, один из размеров которого более двух других на один или несколько порядков измерения. 2. Пиломатериал шириной и толщиной более 100 мм … Энциклопедия терминов, определений и пояснений строительных материалов
Брус — Брус: Топоним Брус деревня, Рыжковичский сельсовет, Шкловский район, Могилёвская область Брус деревня в Крестецком районе Новгородской области России Брус община в Сербии Брус город в Сербии Брус коммуна во Франции Фамилия … Википедия
брус — а; мн. брусья, сьев; м. 1. Бревно, опиленное или обтёсанное на четыре грани (обычно как строительный материал). Потолочные брусья. Сложить крыльцо из брусьев. □ собир. Построить дом из бруса. 2. = Брусок (2 зн.). 3. только мн.: брусья, сьев.… … Энциклопедический словарь
брус — См. дерево. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. брус балка, перекладина, бревно, дерево; фазулина, рудерпост, шлагтов, планир, пиломатериалы, подлегарс, траверса, шпала,… … Словарь синонимов
брус — Пиломатериал толщиной и шириной 100 мм и более. [ГОСТ 18288 87] брус 1. Конструкционное тело, один из размеров которого более двух других на один или несколько порядков измерения 2. Пиломатериал шириной и толщиной более 100 мм [Терминологический… … Справочник технического переводчика
БРУС — бетоно растворосмесительная установка Пример использования БРУС 15 БРУС бюро по реализации услуг сязи Источник: http://www.k26.ru/gtsContacts.htm … Словарь сокращений и аббревиатур
БРУС — БРУС, 1) конструктивный элемент в строительной механике, поперечные размеры которого малы по сравнению с длиной. 2) Пиленый, реже тесаный лесоматериал. Брус толщиной менее 10 см и шириной не более двойной толщины называется бруском … Современная энциклопедия
БРУС — БРУС, бруса, мн. брусья, брусьев, муж. (спец.). 1. Бревно, опиленное или отесанное на четыре грани. 2. То же, что брусок во 2 и 3 знач. (редк.). 3. только мн. То же, что параллельные брусья (спорт.). ❖ Параллельные брусья (спорт.) особый… … Толковый словарь Ушакова
БРУС — муж. долгий четырегранник; длинное шестистороннее тело; дерево, камень, железо, обделанное на четыре грани, не считая двух торцевых. Из бревен пилят брусья, сымая четыре горбыля. Называют брусом и многогранное, долгое тело. Мышка ходит по… … Толковый словарь Даля
Тема 2.2. Растяжение и сжатие
Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только продольные силы N, а прочие силовые факторы (поперечные силы, крутящий и изгибающий моменты) равны нулю.
Это самый простой и часто встречающийся вид деформации. Обычно он наблюдается когда внешняя нагрузка действует вдоль продольной оси стержня. Продольной осью стержня называется линия, проходящая через центры тяжести поперечных сечений.
Обычным является растяжение стержня силами, приложенными к его концам. Передача усилий к стержню может быть осуществлена различными способами, как это показано на рис. 1.
Рис. 1. Растяжение стержня
Во всех случаях, однако, система внешних сил образует равнодействующую F, направленную вдоль оси стержня. Поэтому независимо от условий крепления растянутого стержня, расчетная схема в рассматриваемых случаях (рис. 1, а, б) оказывается единой (рис. 1, в) согласно принципу Сен – Венана.
Если воспользоваться методом сечений (рис. 2), то становится очевидным, что во всех поперечных сечениях стержня возникают нормальные силы Nz, равные силе F (рис. 2, б).
Сжатие отличается от растяжения, формально говоря, только знаком силы Nz. При растяжении нормальная сила Nz направлена от сечения (рис. 2, б), а при сжатии – к сечению.
Рис. 2. Нормальная сила N
Растягивающие продольные силы принято считать положительными (рис. 3, а), а сжимающие – отрицательными (рис. 3, б).
Рис. 3. Знак продольной силы N
При расчете стержней, испытывающий деформацию растяжения, на прочность и жесткость при статическом действии нагрузки, надо решить две основные задачи. Это определение напряжений (от Nz), возникающих в стержне, и нахождение линейных перемещений в зависимости от внешней нагрузки.
Продольные силы (Nz), возникающие в поперечных сечениях стержня, определяются по внешней нагрузке с помощью метода сечений.
График, показывающий изменение продольных сил по длине оси стержня, называется эпюрой продольных сил (эп. Nz). Он дает наглядное представление о законе изменения продольной силы.
Осью абсцисс служит ось стержня. Каждая ордината графика – продольная сила (в масштабе сил) в данном сечении стержня.
Эпюра позволяет определить, в каком сечении действует максимальное внутреннее усилие (например, найти Nmax при растяжении-сжатии). Сечение, где действует максимальное усилие будем называть опасным.
Перед построением эпюр необходимо освободить брус, в котором будем строить эпюры от опорных связей (выделить объект равновесия) и приложить к нему все действующие внешние силы (активные и реактивные). Затем необходимо установить границы участков, в пределах которых закон изменения внутренних сил постоянный. Границами таких участков являются сечения, где приложены сосредоточенные силы или начинается и кончается распределенная нагрузка, а также сечения, где имеется перелом стержня.
Применяя метод сечений и учитывая правила знаков изложенные выше, получаем уравнения изменения внутренних сил в пределах длины каждого участка бруса. Затем, используя, полученные зависимости строим графики (эпюры) этих усилий. Ординаты эпюр в определенном масштабе откладываем от базисной линии, которую проводим параллельно оси бруса.
На основании метода сечений продольная сила в произвольном поперечном сечении стержня численно равна алгебраической сумме проекций внешних сил, приложенных к стержню по одну сторону от рассматриваемого сечения, на его продольную ось.
Причем проекция внешней силы берется со знаком плюс, если сила растягивает часть стержня от точки ее приложения до рассматриваемого сечения и, наоборот, со знаком минус – если сжимает.
§2. Напряжение в поперечных сечениях стержня
Продольная сила N с помощью метода сечений всегда может быть выражена через внешние силы. В формулe следует подставлять алгебраическое значение N т.е со знаком плюс в случае растяжения и со знаком минус в случае сжатия
§3. Расчеты на прочность и жесткость при растяжении-сжатии
Прочность стержня при осевом растяжении и сжатии обеспечена, если для каждого его поперечного сечения наибольшее расчетное (рабочее) напряжение σ не превосходит допускаемого [σ] : σ=N/A≤ [σ],
Данное выражение определяет условие прочности при растяжении или сжатии.
С помощью этой формулы решается три вида зада (выполняется три вида расчета):
1. Проверка прочности (проверочный расчет). При заданных продольной силы N и площади поперечного сечения А определяют рабочее (расчетное) напряжение и сравнивают его с допускаемым [σ].
В случаях, когда рабочее напряжения значительно ниже допускаемых σ
Техническая механика
Сопротивление материалов
Изгиб
Основные понятия об изгибе
Деформация изгиба характеризуется потерей прямолинейности или первоначальной формы линией балки (ее осью) при приложении внешней нагрузки. При этом, в отличие от деформации сдвига, линия балки изменяет свою форму плавно.
Легко убедиться, что на сопротивляемость изгибу влияет не только площадь поперечного сечения балки (бруса, стержня и т. д.), но и геометрическая форма этого сечения.
На изгиб могут работать многие элементы конструкций – оси, валы, балки, зубья зубчатых колес, рычаги, тяги и т. д.
Чистый и поперечный изгиб балки
Чистым изгибом называется такой вид деформации, при котором в любом поперечном сечении бруса возникает только изгибающий момент (рис. 2).
Деформация чистого изгиба будет, например, иметь место, если к прямому брусу в плоскости, проходящей через ось, приложить две равные по величине и противоположные по знаку пары сил. Тогда в каждом сечении бруса будут действовать только изгибающие моменты.
При изучении деформации изгиба будем мысленно представлять себе, что балка (брус) состоит из бесчисленного количества продольных, параллельных оси волокон.
Чтобы наглядно представить деформацию прямого изгиба, проведем опыт с резиновым брусом, на котором нанесена сетка продольных и поперечных линий.
Подвергнув такой брус прямому изгибу, можно заметить, что (рис. 1):
— поперечные линии останутся при деформации прямыми, но повернутся под углом друг другу;
— сечения бруса расширятся в поперечном направлении на вогнутой стороне и сузятся на выпуклой стороне;
— продольные прямые линии искривятся.
Из этого опыта можно сделать вывод, что:
— при чистом изгибе справедлива гипотеза плоских сечений;
— волокна, лежащие на выпуклой стороне растягиваются, на вогнутой стороне – сжимаются, а на границе между ними лежит нейтральный слой волокон, которые только искривляются, не изменяя своей длины.
Изгибающий момент и поперечная сила
Как известно из теоретической механики, опорные реакции балок определяют, составляя и решая уравнения равновесия статики для всей балки. При решении задач сопротивления материалов, и определении внутренних силовых факторов в брусьях, мы учитывали реакции связей наравне с внешними нагрузками, действующими на брусья.
Для определения внутренних силовых факторов применим метод сечений, причем изображать балку будем только одной линией – осью, к которой приложены активные и реактивные силы (нагрузки и реакции связей).
Рассмотрим два случая:
Изгибающий момент есть результирующий момент относительно нейтральной оси внутренних нормальных сил, действующих в поперечном сечении балки.
Обратим внимание на то, что изгибающий момент имеет разное направление для левой и правой частей балки. Это говорит о непригодности правила знаков статики при определении знака изгибающего момента.
Поперечная сила есть равнодействующая внутренних касательных сил в поперечном сечении балки.
Обратим внимание на то, что поперечная сила имеет противоположное направление для левой и правой частей балки, что говорит о непригодности правила знаков статики при определении знака поперечной силы.
Так как правила знаков статики неприемлемы для установления знаков изгибающего момента и поперечной силы, установим для них другие правила знаков, а именно: Если внешняя нагрузка стремится изогнуть балку выпуклостью вниз, то изгибающий момент в сечении считается положительным, и наоборот, если внешняя нагрузка стремится изогнуть балку выпуклостью вверх, то изгибающий момент в сечении считается отрицательным (рис 4,a).
Если сумма внешних сил, лежащих по левую сторону от сечения, дает равнодействующую, направленную вверх, то поперечная сила в сечении считается положительной, если равнодействующая направлена вниз, то поперечная сила в сечении считается отрицательной; для части балки, расположенной справа от сечения, знаки поперечной силы будут противоположными (рис. 4,b). Пользуясь этими правилами, следует мысленно представлять себе сечение балки жестко защемлённым, а связи отброшенными и замененными реакциями.