что такое большие данные простыми словами

Что такое Big Data простыми словами? Применение и перспективы больших данных

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

Через 10 лет мир перейдет в новую эпоху — эпоху больших данных. Вместо виджета погоды на экране смартфона, он сам подскажет вам, что лучше одеть. За завтраком телефон покажет дорогу, по которой вы быстрее доберетесь до работы и когда нужно будет выехать.

Под влиянием Big Data изменится все, чего бы не коснулся человек. Разберемся, что это такое, а также рассмотрим реальное применение и перспективы технологии.

Навигация по материалу:

Что такое Big data?

Большие данные — технология обработки информации, которая превосходит сотни терабайт и со временем растет в геометрической прогрессии.

Такие данные настолько велики и сложны, что ни один из традиционных инструментов управления данными не может их хранить или эффективно обрабатывать. Проанализировать этот объем человек не способен. Для этого разработаны специальные алгоритмы, которые после анализа больших данных дают человеку понятные результаты.

В Big Data входят петабайты (1024 терабайта) или эксабайты (1024 петабайта) информации, из которых состоят миллиарды или триллионы записей миллионов людей и все из разных источников (Интернет, продажи, контакт-центр, социальные сети, мобильные устройства). Как правило, информация слабо структурирована и часто неполная и недоступная.

Как работает технология Big-Data?

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

Пользователи социальной сети Facebook загружают фото, видео и выполняют действия каждый день на сотни терабайт. Сколько бы человек не участвовало в разработке, они не справятся с постоянным потоком информации. Чтобы дальше развивать сервис и делать сайты комфортнее — внедрять умные рекомендации контента, показывать актуальную для пользователя рекламу, сотни тысяч терабайт пропускают через алгоритм и получают структурированную и понятную информацию.

Сравнивая огромный объем информации, в нем находят взаимосвязи. Эти взаимосвязи с определенной вероятностью могут предсказать будущее. Находить и анализировать человеку помогает искусственный интеллект.

Нейросеть сканирует тысячи фотографий, видео, комментариев — те самые сотни терабайт больших данных и выдает результат: сколько довольных покупателей уходит из магазина, будет ли в ближайшие часы пробка на дороге, какие обсуждения популярны в социальной сети и многое другое.

Методы работы с большими данными:

Машинное обучение

Вы просматриваете ленту новостей, лайкаете посты в Instagram, а алгоритм изучает ваш контент и рекомендует похожий. Искусственный интеллект учится без явного программирования и сфокусирован на прогнозировании на основе известных свойств, извлеченных из наборов «обучающих данных».

Машинное обучение помогает :

Анализ настроений

Анализ настроений помогает :

Анализ социальных сетей

Анализ социальных сетей впервые использовали в телекоммуникационной отрасли. Метод применяется социологами для анализа отношений между людьми во многих областях и коммерческой деятельности.

Этот анализ используют чтобы :

Изучение правил ассоциации

Люди, которые не покупают алкоголь, берут соки чаще, чем любители горячительных напитков?

Изучение правил ассоциации — метод обнаружения интересных взаимосвязей между переменными в больших базах данных. Впервые его использовали крупные сети супермаркетов для обнаружения интересных связей между продуктами, используя информацию из систем торговых точек супермаркетов (POS).

С помощью правил ассоциации :

Анализ дерева классификации

Статистическая классификация определяет категории, к которым относится новое наблюдение.

Статистическая классификация используется для :

Генетические алгоритмы

Генетические алгоритмы вдохновлены тем, как работает эволюция, то есть с помощью таких механизмов, как наследование, мутация и естественный отбор.

Генетические алгоритмы используют для :

Регрессионный анализ

Как возраст человека влияет на тип автомобиля, который он покупает?

На базовом уровне регрессионный анализ включает в себя манипулирование некоторой независимой переменной (например, фоновой музыкой) чтобы увидеть, как она влияет на зависимую переменную (время, проведенное в магазине).

Регрессионный анализ используют для определения:

Data Mining — как собирается и обрабатывается Биг Дата

Загрузка больших данных в традиционную реляционную базу для анализа занимает много времени и денег. По этой причине появились специальные подходы для сбора и анализа информации. Для получения и последующего извлечения информацию объединяют и помещают в “озеро данных”. Оттуда программы искусственного интеллекта, используя сложные алгоритмы, ищут повторяющиеся паттерны.

Хранение и обработка происходит следующими инструментами :

Реальное применение Big Data

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

Самый быстрый рост расходов на технологии больших данных происходит в банковской сфере, здравоохранении, страховании, ценных бумагах и инвестиционных услугах, а также в области телекоммуникаций. Три из этих отраслей относятся к финансовому сектору, который имеет множество полезных вариантов для анализа Big Data: обнаружение мошенничества, управление рисками и оптимизация обслуживания клиентов.

Банки и компании, выпускающие кредитные карты, используют большие данные, чтобы выявлять закономерности, которые указывают на преступную деятельность. Из-за чего некоторые аналитики считают, что большие данные могут принести пользу криптовалюте. Алгоритмы смогут выявить мошенничество и незаконную деятельность в крипто-индустрии.

Благодаря криптовалюте такой как Биткойн и Эфириум блокчейн может фактически поддерживать любой тип оцифрованной информации. Его можно использовать в области Big Data, особенно для повышения безопасности или качества информации.

Например, больница может использовать его для обеспечения безопасности, актуальности данных пациента и полного сохранения их качества. Размещая базы данных о здоровьи в блокчейн, больница обеспечивает всем своим сотрудникам доступ к единому, неизменяемому источнику информации.

Также, как люди связывают криптовалюту с волатильностью, они часто связывают большие данные со способностью просеивать большие объемы информации. Big Data поможет отслеживать тенденции. На цену влияет множество факторов и алгоритмы больших данных учтут это, а затем предоставят решение.

Перспективы использования Биг Дата

Blockchain и Big Data — две развивающиеся и взаимодополняющие друг друга технологии. С 2016 блокчейн часто обсуждается в СМИ. Это криптографически безопасная технология распределенных баз данных для хранения и передачи информации. Защита частной и конфиденциальной информации — актуальная и будущая проблема больших данных, которую способен решить блокчейн.

Аналитика Big Data будет важна для отслеживания транзакций и позволит компаниям, использующим блокчейн, выявлять скрытые схемы и выяснять с кем они взаимодействуют в блокчейне.

Рынок Big data в России

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

Весь мир и в том числе Россия используют технологию Big Data в банковской сфере, услугах связи и розничной торговле. Эксперты считают, что в будущем технологию будут использовать транспортная отрасль, нефтегазовая и пищевая промышленность, а также энергетика.

Аналитики IDC признали Россию крупнейшим региональным рынком BDA. По расчетам в текущем году выручка приблизится к 1,4 миллиардам долларов и будет составлять 40% общего объема инвестиций в секторе больших данных и приложений бизнес-аналитики.

Где можно получить образование по Big Data (анализу больших данных)?

GeekUniversity совместно с Mail.ru Group открыли первый в России факультет Аналитики Big Data.

Для учебы достаточно школьных знаний. У вас будут все необходимые ресурсы и инструменты + целая программа по высшей математике. Не абстрактная, как в обычных вузах, а построенная на практике. Обучение познакомит вас с технологиями машинного обучения и нейронными сетями, научит решать настоящие бизнес-задачи.

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

После учебы вы сможете работать по специальностям:

Особенности изучения Big Data в GeekUniversity

Через полтора года практического обучения вы освоите современные технологии Data Science и приобретете компетенции, необходимые для работы в крупной IT-компании. Получите диплом о профессиональной переподготовке и сертификат.

Обучение проводится на основании государственной лицензии № 040485. По результатам успешного завершения обучения выдаем выпускникам диплом о профессиональной переподготовке и электронный сертификат на портале GeekBrains и Mail.ru Group.

Проектно-ориентированное обучение

Обучение происходит на практике, программы разрабатываются совместно со специалистами из компаний-лидеров рынка. Вы решите четыре проектные задачи по работе с данными и примените полученные навыки на практике. Полтора года обучения в GeekUniversity = полтора года реального опыта работы с большими данными для вашего резюме.

Наставник

В течение всего обучения у вас будет личный помощник-куратор. С ним вы сможете быстро разобраться со всеми проблемами, на которые в ином случае ушли бы недели. Работа с наставником удваивает скорость и качество обучения.

Основательная математическая подготовка

Профессионализм в Data Science — это на 50% умение строить математические модели и еще на 50% — работать с данными. GeekUniversity прокачает ваши знания в матанализе, которые обязательно проверят на собеседовании в любой серьезной компании.

GeekUniversity дает полтора года опыта работы для вашего резюме

В результате для вас откроется в 5 раз больше вакансий:

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

Для тех у кого нет опыта в программировании, предлагается начать с подготовительных курсов. Они позволят получить базовые знания для комфортного обучения по основной программе.

Поделитесь этим материалом в социальных сетях и оставьте свое мнение в комментариях ниже.

Источник

Что такое Big Data и почему их называют «новой нефтью»

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

Что такое Big Data?

Big Data или большие данные — это структурированные или неструктурированные массивы данных большого объема. Их обрабатывают при помощи специальных автоматизированных инструментов, чтобы использовать для статистики, анализа, прогнозов и принятия решений.

Сам термин «большие данные» предложил редактор журнала Nature Клиффорд Линч в спецвыпуске 2008 года [1]. Он говорил о взрывном росте объемов информации в мире. К большим данным Линч отнес любые массивы неоднородных данных более 150 Гб в сутки, однако единого критерия до сих пор не существует.

До 2011 года анализом больших данных занимались только в рамках научных и статистических исследований. Но к началу 2012-го объемы данных выросли до огромных масштабов, и возникла потребность в их систематизации и практическом применении.

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

С 2014 на Big Data обратили внимание ведущие мировые вузы, где обучают прикладным инженерным и ИТ-специальностям. Затем к сбору и анализу подключились ИТ-корпорации — такие, как Microsoft, IBM, Oracle, EMC, а затем и Google, Apple, Facebook и Amazon. Сегодня большие данные используют крупные компании во всех отраслях, а также — госорганы. Подробнее об этом — в материале «Кто и зачем собирает большие данные?»

Какие есть характеристики Big Data?

Компания Meta Group предложила основные характеристики больших данных [2]:

Сегодня к этим трем добавляют еще три признака [3]:

Как работает Big Data: как собирают и хранят большие данные?

Большие данные необходимы, чтобы проанализировать все значимые факторы и принять правильное решение. С помощью Big Data строят модели-симуляции, чтобы протестировать то или иное решение, идею, продукт.

Главные источники больших данных:

С 2007 года в распоряжении ФБР и ЦРУ появилась PRISM — один из самых продвинутых сервисов, который собирает персональные данные обо всех пользователях соцсетей, а также сервисов Microsoft, Google, Apple, Yahoo и даже записи телефонных разговоров.

Современные вычислительные системы обеспечивают мгновенный доступ к массивам больших данных. Для их хранения используют специальные дата-центры с самыми мощными серверами.

Помимо традиционных, физических серверов используют облачные хранилища, «озера данных» (data lake — хранилища большого объема неструктурированных данных из одного источника) и Hadoop — фреймворк, состоящий из набора утилит для разработки и выполнения программ распределенных вычислений. Для работы с Big Data применяют передовые методы интеграции и управления, а также подготовки данных для аналитики.

Big Data Analytics — как анализируют большие данные?

Благодаря высокопроизводительным технологиям — таким, как грид-вычисления или аналитика в оперативной памяти, компании могут использовать любые объемы больших данных для анализа. Иногда Big Data сначала структурируют, отбирая только те, что нужны для анализа. Все чаще большие данные применяют для задач в рамках расширенной аналитики, включая искусственный интеллект.

Выделяют четыре основных метода анализа Big Data [4]:

1. Описательная аналитика (descriptive analytics) — самая распространенная. Она отвечает на вопрос «Что произошло?», анализирует данные, поступающие в реальном времени, и исторические данные. Главная цель — выяснить причины и закономерности успехов или неудач в той или иной сфере, чтобы использовать эти данные для наиболее эффективных моделей. Для описательной аналитики используют базовые математические функции. Типичный пример — социологические исследования или данные веб-статистики, которые компания получает через Google Analytics.

«Есть два больших класса моделей для принятия решений по ценообразованию. Первый отталкивается от рыночных цен на тот или иной товар. Данные о ценниках в других магазинах собираются, анализируются и на их основе по определенным правилам устанавливаются собственные цены.

Второй класс моделей связан с выстраиванием кривой спроса, которая отражает объемы продаж в зависимости от цены. Это более аналитическая история. В онлайне такой механизм применяется очень широко, и мы переносим эту технологию из онлайна в офлайн».

2. Прогнозная или предикативная аналитика (predictive analytics) — помогает спрогнозировать наиболее вероятное развитие событий на основе имеющихся данных. Для этого используют готовые шаблоны на основе каких-либо объектов или явлений с аналогичным набором характеристик. С помощью предикативной (или предиктивной, прогнозной) аналитики можно, например, просчитать обвал или изменение цен на фондовом рынке. Или оценить возможности потенциального заемщика по выплате кредита.

3. Предписательная аналитика (prescriptive analytics) — следующий уровень по сравнению с прогнозной. С помощью Big Data и современных технологий можно выявить проблемные точки в бизнесе или любой другой деятельности и рассчитать, при каком сценарии их можно избежать их в будущем.

4. Диагностическая аналитика (diagnostic analytics) — использует данные, чтобы проанализировать причины произошедшего. Это помогает выявлять аномалии и случайные связи между событиями и действиями.

Например, Amazon анализирует данные о продажах и валовой прибыли для различных продуктов, чтобы выяснить, почему они принесли меньше дохода, чем ожидалось.

Данные обрабатывают и анализируют с помощью различных инструментов и технологий [6] [7]:

Как отметил в подкасте РБК Трендов менеджер по развитию IoT «Яндекс.Облака» Александр Сурков, разработчики придерживаются двух критериев сбора информации:

Чтобы обрабатывать большие массивы данных в режиме онлайн используют суперкомпьютеры: их мощность и вычислительные возможности многократно превосходят обычные. Подробнее — в материале «Как устроены суперкомпьютеры и что они умеют».

Big Data и Data Science — в чем разница?

Data Science или наука о данных — это сфера деятельности, которая подразумевает сбор, обработку и анализ данных, — структурированных и неструктурированных, не только больших. В ней используют методы математического и статистического анализа, а также программные решения. Data Science работает, в том числе, и с Big Data, но ее главная цель — найти в данных что-то ценное, чтобы использовать это для конкретных задач.

В каких отраслях уже используют Big Data?

Павел Иванченко, руководитель по IoT «МегаФона»:

«IoT-решение из области так называемого точного земледелия — это когда специальные метеостанции, которые стоят в полях, с помощью сенсоров собирают данные (температура, влажность) и с помощью передающих радио-GSM-модулей отправляют их на IoT-платформу. На ней посредством алгоритмов big data происходит обработка собранной с сенсоров информации и строится высокоточный почасовой прогноз погоды. Клиент видит его в интерфейсе на компьютере, планшете или смартфоне и может оперативно принимать решения».

Big Data в России и мире

По данным компании IBS [8], в 2012 году объем хранящихся в мире цифровых данных вырос на 50%: с 1,8 до 2,7 Збайт (2,7 трлн Гбайт). В 2015-м в мире каждые десять минут генерировалось столько же данных, сколько за весь 2003 год.

По данным компании NetApp, к 2003 году в мире накопилось 5 Эбайтов данных (1 Эбайт = 1 млрд Гбайт). В 2015-м — более 6,5 Збайта, причем тогда большие данные использовали лишь 17% компаний по всему миру [9]. Большую часть данных будут генерировать сами компании, а не их клиенты. При этом обычный пользователь будет коммуницировать с различными устройствами, которые генерируют данные, около 4 800 раз в день.

Сейчас в США с большими данными работает более 55% компаний [11], в Европе и Азии — около 53%. Только за последние пять лет распространение Big Data в бизнесе выросло в три раза.

В Китае действует более 200 законов и правил, касающихся защиты личной информации. С 2019 года все популярные приложения для смартфонов начали проверять и блокировать, если они собирают данные о пользователях вопреки законам. В итоге данные через местные сервисы собирает государство, и многие из них недоступны извне.

С 2018 года в Евросоюзе действует GDPR — Всеобщий регламент по защите данных. Он регулирует все, что касается сбора, хранения и использования данных онлайн-пользователей. Когда закон вступил в силу год назад, он считался самой жесткой в мире системой защиты конфиденциальности людей в Интернете.

В России рынок больших данных только зарождается. К примеру, сотовые операторы делятся с банками информацией о потенциальных заемщиках [12]. Среди корпораций, которые собирают и анализируют данные — «Яндекс», «Сбер», Mail.ru. Появились специальные инструменты, которые помогают бизнесу собирать и анализировать Big Data — такие, как российский сервис Ctrl2GO.

Big Data в бизнесе

Большие данные полезны для бизнеса в трех главных направлениях:

Крупные компании — такие, как Netflix, Procter & Gamble или Coca-Cola — с помощью больших данных прогнозируют потребительский спрос. 70% решений в бизнесе и госуправлении принимается на основе геоданных. Подробнее — в материале о том, как бизнес извлекает прибыль из Big Data.

Каковы проблемы и перспективы Big Data?

Главные проблемы:

Плюсы и перспективы:

В ближайшем будущем большие данные станут главным инструментом для принятия решений — начиная с сетевых бизнесов и заканчивая целыми государствами и международными организациями [15].

Источник

Big Data — что это такое? Простыми словами рассказываем о главном

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

Big Data — это область IT-сферы, которая изучает, анализирует, обрабатывает и взаимодействует с большими объемами данных. Биг дата — это все инструменты, подходы, методы обработки всех известных типов больших данных.

Специалисты биг дата чаще всего работают с неструктурированными данными, обработка которых дает структурированные данные в табличном представлении, используемые далее по назначению.

Классификация биг дата

Big Data — это большой объем разноплановых данных, но при этом все данные поддаются классификации и их можно разделить на 3 основные группы:

Как характеризуются биг дата

Любые биг дата можно охарактеризовать 4 особенностями:

Основные термины, окружающие биг дата

Big Data — это большие данные и много различных терминов, связанных с ними и с их обработкой. Несколько популярных терминов:

Заключение

Невзирая на размеры, биг дата — это всегда работа с большим объемом данных. Big Data — это способность использовать большие объемы данных для благих целей. Работа с биг дата имеет очень важное значение в современном мире, поэтому она задействована во многих сферах человеческой деятельности.

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Источник

Big Data: что это и где применяется?

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

Почему все вокруг говорят про большие данные? Какие именно данные считаются большими? Где их искать, зачем они нужны, как на них заработать? Объясняем простыми словами вместе с экспертом SkillFactory — ведущим автором трека по машинному обучению в DS Акселераторе, а также старшим аналитиком в «КиноПоиске» Александром Кондрашкиным.

Что такое Big Data

Big Data (большие данные) — огромные наборы разнообразных данных. Огромные, потому что их объемы такие, что простой компьютер не справится с их обработкой, а разнообразные — потому что эти данные разного формата, неструктурированные и содержат ошибки. Большие данные быстро накапливаются и используются для разных целей.

Big Data — это не обычная база данных, даже если она очень большая. Вот отличия:

Не большие данныеБольшие данные
База записей о тысячах работников корпорации. Информация в такой базе имеет заранее известные характеристики и свойства, ее можно представить в виде таблицы, как в Excel.Журнал действий сотрудников. Например, все данные, которые создает во время работы колл-центр, где работает 500 человек.
Информация об именах, возрасте и семейном положении всех 2,5 миллиардов пользователей Facebook — это всего лишь очень большая база данных.Переходы по ссылкам, отправленные и полученные сообщения, лайки и репосты, движения мыши или касания экранов смартфонов всех пользователей Facebook.
Архив записей городских камер видеонаблюдения.Данные системы видеофиксации нарушений правил дорожного движения с информацией о дорожной ситуации и номерах автомобилей нарушителей; информация о пассажирах метро, полученная с помощью системы распознавания лиц, и о том, кто из них числится в розыске.

Объем информации в мире увеличивается ежесекундно, и то, что считали большими данными десятилетие назад, теперь умещается на жесткий диск домашнего компьютера.

что такое большие данные простыми словами. Смотреть фото что такое большие данные простыми словами. Смотреть картинку что такое большие данные простыми словами. Картинка про что такое большие данные простыми словами. Фото что такое большие данные простыми словами

60 лет назад жесткий диск на 5 мегабайт был в два раза больше холодильника и весил около тонны. Современный жесткий диск в любом компьютере вмещает до полутора десятков терабайт (1 терабайт равен 1 млн мегабайт) и по размерам меньше обычной книги.

В 2021 году большие данные измеряют в петабайтах. Один петабайт равен миллиону гигабайт. Трехчасовой фильм в формате 4K «весит» 60‒90 гигабайт, а весь YouTube — 5 петабайт или 67 тысяч таких фильмов. 1 млн петабайт — это 1 зеттабайт.

Data Scientist с нуля

Cтаньте дата-сайентистом и приручите большие данные. Вы научитесь выявлять закономерности в данных и создавать модели для решения реальных бизнес-задач. Скидка 5% по промокоду BLOG.

Как работает технология Big Data?

Источники сбора больших данных делятся на три типа:

Все, что человек делает в сети, — источник социальных больших данных. Каждую секунду пользователи загружают в Instagram 1 тыс. фото и отправляют более 3 млн электронных писем. Ежесекундный личный вклад каждого человека — в среднем 1,7 мегабайта.

Другие примеры социальных источников Big Data — статистики стран и городов, данные о перемещениях людей, регистрации смертей и рождений и медицинские записи.

Большие данные также генерируются машинами, датчиками и «интернетом вещей». Информацию получают от смартфонов, умных колонок, лампочек и систем умного дома, видеокамер на улицах, метеоспутников.

Транзакционные данные возникают при покупках, переводах денег, поставках товаров и операциях с банкоматами.

Как обрабатывают большие данные?

Массивы Big Data настолько большие, что простой Excel с ними не справится. Поэтому для работы с ними используют специальное ПО.

Его называют «‎горизонтально масштабируемым‎‎»‎, потому что оно распределяет задачи между несколькими компьютерами, одновременно обрабатывающими информацию. Чем больше машин задействовано в работе, тем выше производительность процесса.

Такое ПО основано на MapReduce, модели параллельных вычислений. Модель работает так:

MapReduce — не конкретная программа, а скорее алгоритм, с помощью которого можно решить большинство задач обработки больших данных.

Примеры ПО, которое основывается на MapReduce:

Специалисты по большим данным используют оба инструмента: Hadoop для создания инфраструктуры данных и Spark для обработки потоковой информации в реальном времени.

Где применяется аналитика больших данных?

Большие данные нужны в маркетинге, перевозках, автомобилестроении, здравоохранении, науке, сельском хозяйстве и других сферах, в которых можно собрать и обработать нужные массивы информации.

Бизнесу большие данные нужны, чтобы:

Анализ больших данных позволяет не только систематизировать информацию, но и находить неочевидные причинно-следственные связи.

Продажи товаров

Онлайн-маркетплейс Amazon запустил систему рекомендаций товаров, работающую на машинном обучении. Она учитывает не только поведение и предыдущие покупки пользователя, но и время года, ближайшие праздники и остальные факторы. После того как эта система заработала, рекомендации начали генерировать 35% всех продаж сервиса.

В супермаркетах «Лента» с помощью больших данных анализируют информацию о покупках и предлагают персонализированные скидки на товары. К примеру, говорят в компании, система по данным о покупках может понять, что клиент изменил подход к питанию, и начнет предлагать ему подходящие продукты.

Американская сеть Kroger использует большие данные для персонализации скидочных купонов, которые получают покупатели по электронной почте. После того как их сделали индивидуальными, подходящими конкретным покупателям, доля покупок только по ним выросла с 3,7 до 70%.

Найм сотрудников

Крупные компании, в том числе российские, стали прибегать к помощи роботов-рекрутеров, чтобы на начальном этапе поиска сотрудника отсеять тех, кто не заинтересован в вакансии или не подходит под нее. Так, компания Stafory разработала робота Веру, которая сортирует резюме, делает первичный обзвон и выделяет заинтересованных кандидатов. PepsiCo заполнила 10% нужных вакансий только с помощью робота.

Банки

Автомобилестроение

В 2020 году у автоконцерна Toyota возникла проблема: нужно было понять причину большого числа аварий по вине водителей, перепутавших педали газа и тормоза. Компания собрала данные со своих автомобилей, подключенных к интернету, и на их основе определила, как именно люди нажимают на педали.

Оказалось, что сила и скорость давления различаются в зависимости от того, хочет человек затормозить или ускориться. Теперь компания разрабатывает систему, которая будет определять манеру давления на педали во время движения и сбросит скорость автомобиля, если водитель давит на педаль газа, но делает это так, будто хочет затормозить.

Медицина

Американские ученые научились с помощью больших данных определять, как распространяется депрессия. Исследователь Мунмун Де Чаудхури и ее коллеги загрузили в прогностическую модель сообщения из Twitter, Facebook и Reddit с геометками. Сообщения отбирали по словам, которые могут указывать на депрессивное и подавленное состояние. Расчеты совпали с официальными данными.

Госструктуры

Большие данные просто необходимы госструктурам. С их помощью ведется не только статистика, но и слежка за гражданами. Подобные системы есть во многих странах: известен сервис PRISM, которыми пользуются ФБР и ЦРУ для сбора персональных данных из соцсетей и продуктов Microsoft, Google и Apple. В России информацию о пользователях и телефонных звонках собирает система СОРМ.

Маркетинг

Социальные большие данные помогают группировать пользователей по интересам и персонализировать для них рекламу. Людей ранжируют по возрасту, полу, интересам и месту проживания. Те, кто живут в одном регионе, бывают в одних и тех же местах, смотрят видео и читают статьи на похожие темы, скорее всего, заинтересуются одними и теми же товарами.

При этом регулярно происходят скандалы, связанные с использованием больших данных в маркетинге. Так, в 2018 году стриминговую платформу Netflix обвинили в расизме из-за того, что она показывает пользователям разные постеры фильмов и сериалов в зависимости от их пола и национальности.

Медиа

С помощью анализа больших данных в медиа измеряют аудиторию. В этом случае Big Data может даже повлиять на политику редакции. Так, издание Huffington Post использует систему, которая в режиме реального времени показывает статистику посещений, комментариев и других действий пользователей, а также готовит аналитические отчеты.

Система в Huffington Post оценивает, насколько эффективно заголовки привлекают внимание читателя, разрабатывает методы доставки контента определенным категориям пользователей. Например, выяснилось, что родители чаще читают статьи со смартфона и поздно вечером в будни, после того как уложили детей спать, а по выходным они обычно заняты, — в итоге контент для родителей публикуется на сайте в удобное для них время.

Логистика

Использование больших данных помогает оптимизировать перевозки, сделать доставку быстрее и дешевле. В компании DHL работа с большими данными коснулась так называемой проблемы последней мили, когда необходимость проехать через дворы и найти парковку перед тем, как отдать заказ, съедает в общей сложности 28% от стоимости доставки. В компании стали анализировать «последние мили» с помощью информации с GPS и данных о дорожной обстановке. В результате удалось сократить затраты на топливо и время доставки груза.

Внутри компании большие данные помогают отслеживать качество работы сотрудников, соблюдение контрольных сроков, правильность их действий. Для анализа используют машинные данные, например со сканеров посылок в отделениях, и социальные — отзывы посетителей отделения в приложении, на сайтах и в соцсетях.

Обработка фото

До 2016 года не было технологии нейросетей на мобильных устройствах, это даже считали невозможным. Прорыв в этой области (в том числе благодаря российскому стартапу Prisma) позволяет нам сегодня пользоваться огромным количеством фильтров, стилей и разных эффектов на фотографиях и видео.

Аренда недвижимости

Сервис Airbnb с помощью Big Data изменил поведение пользователей. Однажды выяснилось, что посетители сайта по аренде недвижимости из Азии слишком быстро его покидают и не возвращаются. Оказалось, что они переходят с главной страницы на «Места поблизости» и уходят смотреть фотографии без дальнейшего бронирования.

Компания детально проанализировала поведение пользователей и заменила ссылки в разделе «Места поблизости» на самые популярные направления для путешествий в азиатских странах. В итоге конверсия в бронирования из этой части планеты выросла на 10%.

Кто работает с большими данными?

Дата-сайентисты специализируются на анализе Big Data. Они ищут закономерности, строят модели и на их основе прогнозируют будущие события.

Например, исследователь больших данных может использовать статистику по снятиям денег в банкоматах, чтобы разработать математическую модель для предсказания спроса на наличные. Эта система подскажет инкассаторам, сколько денег и когда привезти в конкретный банкомат.

Чтобы освоить эту профессию, необходимо понимание основ математического анализа и знание языков программирования, например Python или R, а также умение работать с SQL-базами данных.

Data Scientist с нуля

Вы освоите Python и SQL, познакомитесь с машинным обучением и определитесь со специализацией: Machine Learning, Computer Vision или Natural Language Processing. Скидка 5% по промокоду BLOG.

Аналитик данных использует тот же набор инструментов, что и дата-сайентист, но для других целей. Его задачи — делать описательный анализ, интерпретировать и представлять данные в удобной для восприятия форме. Он обрабатывает данные и выдает результат, составляя аналитические отчеты, статистику и прогнозы.

С Big Data также работают и другие специалисты, для которых это не основная сфера работы:

Освойте все инструменты, необходимые junior-аналитику и получите востребованную профессию за 6 месяцев. Дополнительная скидка 5% по промокоду BLOG.

Дата-инженер занимается технической стороной вопроса и первый работает с информацией: организует ее сбор, хранение и первоначальную обработку.

Дата-инженеры помогают исследователям, создавая ПО и алгоритмы для автоматизации задач. Без таких инструментов большие данные были бы бесполезны, так как их объемы невозможно обработать. Для этой профессии важно знание Python и SQL, уметь работать с фреймворками, например со Spark.

Курс подходит для тех, кто имеет базовые знания языка Python. За два месяца вы освоите все важные этапы Data Engineering. Дополнительная скидка 5% по промокоду BLOG.

Александр Кондрашкин о других профессиях, в которых может понадобиться Big Data: «Где-то может и product-менеджер сам сходить в Hadoop-кластер и посчитать что-то несложное, если обладает такими навыками. Наверняка есть множество backend-разработчиков и DevOps-инженеров, которые настраивают хранение и сбор данных от пользователей».

Востребованность больших данных и специалистов по ним

Востребованность больших данных растет: по исследованиям 2020 года, даже при пессимистичном сценарии объем рынка Big Data в России к 2024 году вырастет с 45 млрд до 65 млрд рублей, а при хорошем развитии событий — до 230 млрд.

Вместе с популярностью больших данных растет запрос и на тех, кто может эффективно с ними работать. В середине 2020 года Академия больших данных MADE от Mail.ru Group и HeadHunter провели исследование и выяснили, что специалисты по анализу данных уже являются одними из самых востребованных на рынке труда в России. За четыре года число вакансий в этой области увеличилось почти в 10 раз.

Более трети вакансий для специалистов по анализу данных (38%) приходится на IT-компании, финансовый сектор (29%) и сферу услуг для бизнеса (9%). В сфере машинного обучения IT-компании публикуют 55% вакансий на рынке, 10% приходит из финансового сектора и 9% — из сферы услуг.

Как начать работать с большими данными?

Проще будет начать, если у вас уже есть понимание алгоритмов и хорошее знание математики. Оксана Дереза была филологом и для нее главной трудностью в Data Science оказалось вспомнить математику и разобраться в алгоритмах, но она много занималась и теперь анализирует данные в исследовательском институте.

Но если знаний нет, то на курсе SkillFactory «Data Science с нуля» вы получите достаточную математическую подготовку, чтобы работать с большими данными. За год вы научитесь получать данные из веб-источников или по API, визуализировать данные с помощью Pandas и Matplotlib, применять методы математического анализа, линейной алгебры, статистики и теории вероятности для обработки данных и многое другое.

Чтобы стать аналитиком данных, вам пригодится знание Python и SQL — эти навыки очень популярны в вакансиях компаний по поиску соответствующей позиции. На курсе «Аналитик данных» вы получите базу знаний основных инструментов аналитики (от Google-таблиц до Python и Power BI) и закрепите их на тренажерах.

Важно определиться со сферой, в которой вы хотите работать. Студентка SkillFactory Екатерина Карпова, рассказывает, что после обучения ей была важна не должность, а сфера (финтех), поэтому она сначала устроилась консультантом в банк «Тинькофф», а теперь работает там аналитиком.

Data Science с нуля

Освойте все необходимые инструменты для уровня junior и получите самую востребованную IT-профессию 2021 года.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *