что такое биг дата в маркетинге

Что такое Big Data (большие данные) в маркетинге: проблемы, алгоритмы, методы анализа

что такое биг дата в маркетинге. Смотреть фото что такое биг дата в маркетинге. Смотреть картинку что такое биг дата в маркетинге. Картинка про что такое биг дата в маркетинге. Фото что такое биг дата в маркетинге

Большие данные (Big Data) — довольно распространенное понятие в IT и интернет-маркетинге. По сути, определение термина лежит на поверхности: «большие данные» означает управление и анализ очень больших объемов данных. Если смотреть шире, то это информация, которая не поддается обработке классическими способами по причине больших объемов.

Содержание

Big Data — что это такое?

Цифровые технологии присутствуют во всех областях жизни человека. Объем записываемых в мировые хранилища данных ежесекундно растет, а это означает, что такими же темпами должны изменяться условия хранения информации и появляться новые возможности для наращивания ее объема.

Эксперты в области IT высказывают мнение, что расширение Big Data и ускорение темпа роста стало объективной реальностью. Ежесекундно гигантские объемы контента генерируют такие источники, как социальные сети, информационные сайты, файлообменники — и это лишь сотая часть поставщиков.

Согласно исследованию IDC Digital Universe, в ближайшие пять лет объем данных на планете вырастет до 40 зеттабайтов, то есть к 2020 году на каждого живущего на Земле человека будет приходиться по 5200 Гб.

что такое биг дата в маркетинге. Смотреть фото что такое биг дата в маркетинге. Смотреть картинку что такое биг дата в маркетинге. Картинка про что такое биг дата в маркетинге. Фото что такое биг дата в маркетинге

Рост Big Data к 2020 году, прогноз IDC Digital Universe от 2012 года Источник:www.emc.com.

Известно, что основной поток информации генерируют не люди. Источником служат роботы, находящиеся в постоянном взаимодействии друг с другом. Это приборы для мониторинга, сенсоры, системы наблюдения, операционные системы персональных устройств, смартфоны, интеллектуальные системы, датчики и прочее. Все они задают бешеный темп роста объема данных, что приводит к появлению потребности наращивать количество рабочих серверов (и реальных, и виртуальных) — как следствие, расширять и внедрять новые data-центры.

По сути, большие данные — довольно условное и относительное понятие. Самое распространенное его определение — это набор информации, по объему превосходящей жесткий диск одного персонального устройства и не поддающейся обработке классическими инструментами, применяемыми для меньших объемов.

что такое биг дата в маркетинге. Смотреть фото что такое биг дата в маркетинге. Смотреть картинку что такое биг дата в маркетинге. Картинка про что такое биг дата в маркетинге. Фото что такое биг дата в маркетинге

Наглядная иллюстрация роста объемов с 1986 до 2007 годов. Источник: www.martinhilbert.net.

Технология Big Data — что это? Обобщенно говоря, технологию обработки больших данных можно свести к трем основным направлениям, решающим три типа задач:

В сущности, применение Big Data подразумевает все направления работы с огромным объемом самой разрозненной информации, постоянно обновляемой и разбросанной по разным источникам. Цель предельна проста — максимальная эффективность работы, внедрение новых продуктов и рост конкурентоспособности.

Проблема Big Data

Проблемы системы Big Data можно свести к трем основным группам: объем, скорость обработки, неструктурированность. Это три V — Volume, Velocity и Variety.

Хранение больших объемов информации требует специальных условий, и это вопрос пространства и возможностей. Скорость связана не только с возможным замедлением и «торможением», вызываемом старыми методами обработок, это еще и вопрос интерактивности: чем быстрее процесс, тем больше отдача, тем продуктивнее результат.

Проблема неоднородности и неструктурированности возникает по причине разрозненности источников, форматов и качества. Чтобы объединить данные и эффективно их обрабатывать, требуется не только работа по приведению их в пригодный для работы вид, но и определенные аналитические инструменты (системы).

Но это еще не все. Существует проблема предела «величины» данных. Ее трудно установить, а значит трудно предугадать, какие технологии и сколько финансовых вливаний потребуется для дальнейших разработок. Однако для конкретных объемов данных (терабайт, к примеру) уже применяются действующие инструменты обработки, которые к тому же и активно развиваются.

Существует проблема, связанная с отсутствием четких принципов работы с таким объемом данных. Неоднородность потоков только усугубляет ситуацию. Каким образом подходить к их применимости, чтобы вынести из них что-то ценное? Здесь требуется разработка такого направления, как новые методы анализа Big Data, чтобы этот поток стал полезным источником информации. Возможно, согласно утверждениям представителей университетов США (Нью-Йоркского, Вашингтонского и Калифорнийского), сегодня пришло время ввести и развивать новую дисциплину — науку о Big Data.

Собственно, это и является главной причиной отсрочки внедрения в компании проектов Big Data (если не брать во внимание еще один фактор — довольно высокую стоимость).

Подбор данных для обработки и алгоритм анализа может стать не меньшей проблемой, так как отсутствует понимание, какие данные следует собирать и хранить, а какие можно игнорировать. Становится очевидной еще одна «болевая точка» отрасли — нехватка профессиональных специалистов, которым можно было бы доверить глубинный анализ, создание отчетов для решения бизнес-задач и как следствие извлечение прибыли (возврат инвестиций) из Big Data.

Еще одна проблема Big Data носит этический характер. А именно: чем сбор данных (особенно без ведома пользователя) отличается от нарушения границ частной жизни? Так, информация, сохраняемая в поисковых системах Google и Яндекс, позволяет им постоянно дорабатывать свои сервисы, делать их удобными для пользователей и создавать новые интерактивные программы.

Поисковики записывают каждый клик пользователя в Интернете, им известен его IP-адрес, геолокация, интересы, онлайн-покупки, личные данные, почтовые сообщения и прочее, что, к примеру, позволяет демонстрировать контекстную рекламу в соответствии с поведением пользователя в Интернете. При этом согласия на это не спрашивается, а возможности выбора, какие сведения о себе предоставлять, не дается. То есть по умолчанию в Big Data собирается все, что затем будет храниться на серверах данных сайтов.

Здесь можно затронуть дргую проблему — обеспечение безопасности хранения и использования данных. Например, сведения о возможных покупателях и их история переходов на сайтах интернет-магазинов однозначно применимы для решения многих бизнес-задач. Но безопасна ли аналитическая платформа, которой потребители в автоматическом режиме (просто потому, что зашли на сайт) передают свои данные, — это вызывает множество споров. Современную вирусную активность и хакерские атаки не сдерживают даже супер-защищенные серверы правительственных спецслужб.

История больших данных

Сами по себе алгоритмы Big Data возникли при внедрении первых высокопроизводительных серверов (мэйнфреймов), обладающих достаточными ресурсами для оперативной обработки информации и пригодных для компьютерных вычислений и для дальнейшего анализа..

Сам термин Big Data впервые был озвучен в 2008 году на страницах спецвыпуска журнала Nature в статье главного редактора Клиффорда Линча. Этот номер издания был посвящен взрывному росту глобальных объемов данных и их роли в науке.

Специалисты утверждают, что большими данными допустимо называть любые потоки информации объемом более 100 Гб в сутки.

Однако в последние 2-3 года ученые отмечают, что термин Big Data стал лишком популяризирован, его употребляют практически везде, где упоминаются потоки данных, и как следствие он стал восприниматься слишком обобщенно и размыто. Виной тому не совсем сведущие журналисты и малоопытные предприниматели, которые попусту злоупотребляют данным понятием. По мнению западных экспертов, термин давно дискредитировал себя и пришло время от него отказаться.

Сегодня мировое сообщество вновь заговорило о больших данных. Причины — в неизменном росте объемов информации и отсутствии какой-либо структуры в ней. Предпринимателей и ученых волнуют вопросы качественной интерпретации данных, разработки инструментов для работы с ними и развитие технологий хранения. Этому способствует внедрение и активное использованию облачных моделей хранения и вычислений.

Big Data в маркетинге

Информация – это главный аспект успешного прогнозирования роста и составления маркетинговой стратегии в умелых руках маркетолога. Анализ больших данных давно и успешно применяется для определения: целевой аудитории, интересов, спроса, активности потребителей. Таким образом, Big Data является точнейшим инструментом маркетолога для предсказания будущего компании.

К примеру, анализ больших данных позволяет выводить рекламу (на основе известной модели RTB-аукциона — Real Time Bidding) только тем потребителям, которые заинтересованы в товаре или услуге.

Применение Big Data в маркетинге позволяет бизнесменам:

Например, сервис Google.trends очень точно укажет маркетологу прогноз сезонной активности спроса на конкретный продукт, колебания и географию кликов. Достаточно сопоставить эти сведения со статистическими данными собственного сайта и можно составить качественный план по распределению рекламного бюджета с указанием месяца и региона.

Вместо заключения

Сегодня, в пик высоких технологий и огромных потоков информации, у компаний появилось гораздо больше возможностей для достижения превосходных показателей в ведении бизнеса благодаря использованию Big Data.

Источник

Технологии Big Data: как использовать большие данные в маркетинге

20 минут на чтение

Оглавление

Что такое Big Data?

Термин Big Data появился в 2008 году. Впервые его употребил редактор журнала Nature — Клиффорд Линч. Он рассказывал про взрывной рост объемов мировой информации и отмечал, что освоить их помогут новые инструменты и более развитые технологии.

Чтобы понять Big Data, необходимо определиться с понятием и его функцией в маркетинге. В наши дни пользователи генерируют данные регулярно: когда они открывают какое-либо приложение, ищут информацию в Google, совершают покупки в интернете или просто путешествуют со смартфоном в кармане. В результате возникают огромные массивы ценной информации, которую компании собирают, анализируют и визуализируют.

Big Data буквально переводится на русский язык как «Большие данные». Этим термином определяют массивы информации, которые невозможно обработать или проанализировать при помощи традиционных методов с использованием человеческого труда и настольных компьютеров. Особенность Big Data еще и в том, что массив данных со временем продолжает экспоненциально расти, поэтому для оперативного анализа собранных материалов необходимы вычислительные мощности суперкомпьютеров. Соответственно, для обработки Big Data необходимы экономичные, инновационные методы обработки информации и предоставления выводов.

Но зачем прилагать столько усилий для систематизации и анализа Big Data? Аналитику Больших данных используют, чтобы понять привлекательность товаров и услуг, спрогнозировать спрос на рынке и реакцию на рекламную кампанию. Работа с Big Data помогает фирмам привлечь больше потенциальных клиентов и увеличить доходы, использовать ресурсы рационально и строить грамотную бизнес-стратегию.

А это значит, что аналитики, умеющие извлекать полезную информацию из больших данных, сейчас нарасхват. Научиться этому можно, даже если вы никогда не работали в IT. Например, «Факультет аналитики Big Data» от GeekBrains предлагает удобные онлайн-занятия и десяток кейсов в портфолио. Кстати, первые шесть месяцев обучения бесплатно. Успешно прошедших курс обязательно трудоустроят – это прописано в договоре.

Разница подходов

Функции и задачи больших данных

Big Data характеризует большой объем структурированных и неструктурированных данных, которые ежеминутно образуется в цифровой среде. IBM утверждает, что в мире предприятия ежедневно генерируют почти 2,5 квинтиллиона байтов данных! А 90% глобальных данных получено только за последние 2 года.

Но важен не объем информации, а возможности, которые даёт её анализ. Одно из основных преимуществ Big Data — предиктивный анализ. Инструменты аналитики Больших данных прогнозируют результаты стратегических решений, что оптимизирует операционную эффективность и снижает риски компании.

Big Data объединяют релевантную и точную информацию из нескольких источников, чтобы наиболее точно описать ситуацию на рынке. Анализируя информацию из социальных сетей и поисковых запросов, компании оптимизируют стратегии цифрового маркетинга и опыт потребителей. Например, сведения о рекламных акциях всех конкурентов, позволяют руководство фирмы предложить более выгодный «персональный» подход клиенту.

Компании, правительственные учреждения, поставщики медицинских услуг, финансовые и академические учреждения — все используют возможности Больших данных для улучшения деловых перспектив и качества обслуживания клиентов. Хотя исследования показывают, что еще почти 43% коммерческих организаций до сих пор не обладают необходимыми инструментами для фильтрации нерелевантных данных, теряя потенциальную прибыль. Поэтому сегодня на рынке наметился курс на модернизацию бизнес-процессов, освоение новых технологий и внедрение Big Data.

Блокчейн и Биг Дата: потенциал объединенной технологии

Блокчейн — это децентрализованная система транзакций, где каждую транзакцию проверяет каждый элемент сети. Такая система гарантирует неизменность и невозможность манипуляции данными.

Криптовалюты и другие технологии блокчейн становятся все более популярными. Только в Японии почти 50 банков вступили в партнерские отношения с Ripple, сетью блокчейнов с открытым исходным кодом и с третьей по величине рыночной капитализацией криптовалютой в мире. Для банков сотрудничество обеспечит мгновенные безрисковые транзакции по низкой цене. Интерес к подобным операциям проявляют финансовые структуры в других странах, что означает дальнейшее развитие новых технологий в банковской сфере.

Использование блокчейна открывает новый уровень аналитики Big Data. Такая информация структурирована, полноценна и безопасна, так как ее невозможно подделать из-за сетевой архитектуры. Анализируя ее, алгоритмы смогут проверять каждую транзакцию в режиме реального времени, что практически уничтожит мошенничество в цифровой сфере. Вместо анализа записей о махинациях, которые уже имели место, банки могут мгновенно выявлять рискованные или мошеннические действия и предотвращать их.

Технология блокчейн применима не только к финансовому сектору. Неизменяемые записи, контрольные журналы и уверенность в происхождении данных — всё это применимо в любых бизнес-сферах. Уже сейчас компании внедряют блокчейн при торговле продуктами питания, а с другой стороны — изучают перспективы технологии при освоении космоса. Ожидается, что будущие решения в сфере Big Data и блокчейн радикально изменят способы ведения бизнеса.

Машинное обучение

Сегодня во многих отраслях внедряют машинное обучение для автоматизации бизнес-процессов и модернизации экономической сферы. Концепция предусматривает обучение и управление искусственным интеллектом (ИИ) с помощью специальных алгоритмов. Они учат систему на основе открытых данных или полученного опыта. Со временем такое приложение способно прогнозировать развитие событий без явного программирования человеком и часов потраченных на написание кода.

Например, с помощью машинного обучения можно создать алгоритм технического анализа акций и предполагаемых цен на них. Используя регрессионный и прогнозный анализы, статистическое моделирование и анализа действий, эксперты создают программы, которые рассчитывают время выгодных покупок на фондовом рынке. Они анализируют открытые данные с бирж и предлагают наиболее вероятное развитие событий.

При работе с Большими данными машинное обучение выполняет сходную функцию: специальные программы анализируют внушительные объемы информации без вмешательства человека. Все, что требуется от оператора «научить» алгоритм отбирать полезные данные, которые нужны компании для оптимизации процессов. Благодаря этому аналитики составляют отчеты за несколько кликов мыши, высвобождая своё время и ресурсы для более продуктивных задач: обработки результатов и поиск наиболее эффективных стратегий.

В динамично развивающемся мире, где ожидания клиентов всё выше, а человеческие ресурсы всё ценнее, машинное обучение и наука о данных играют решающую роль в развитии компании. Цифровая технологизация рабочего процесса жизненно необходима для сохранения лидирующих позиций в конкурентной среде.

Источник

Big Data в маркетинге: 6 вариантов применения

Только 17% компаний принимают решения на основе данных, хотя всем известны преимущества data-driven маркетинга. Если вы не используете данные, вы упускаете много возможностей. Вот 6 примеров, как использовать эти данные для извлечения дополнительной прибыли.

Сегментировать клиентов – это простой, но действенный способ использовать данные в Email-маркетинге. Фиксируйте действия, покупки, характеристики клиентов и вы поймете, какой контент будет интересен каждому. Сделайте Email персонализированным каналом общения с покупателем.

74% маркетологов отмечают рост вовлеченности после сегментированных Email-рассылок. Это позволяет увеличить ROMI до 760%.

Не отправляйте одинаковое письмо теплому лиду и совсем новому подписчику. Если лид: а) посещал целевую страницу несколько раз; б) смотрел информацию о цене; в) проявлял интерес другими способами, отправьте ему промо-письмо по целевому продукту. Новым подписчикам отправьте цепочку писем с интересным контентом. Он увеличит интерес и сформирует дополнительную ценность.

Используйте Email-маркетинг для отправки автоматических писем, которые смогут продвинуть лид по воронке продаж.

32% руководителей компаний отдают приоритет удержанию клиентов. Это не удивительно, ведь привлечение новых обходится в 5-25 раз дороже, чем сохранение существующих.

При повышении клиентской лояльности нужны данные. И чем больше, тем лучше. Анализируйте продажи, и вы поймете, какие товары еще можно предложить. К примеру, у вас есть три похожих продукта в ассортименте, и клиент покупал два из них. Высока вероятность, что он будет чувствителен к рекламе третьего продукта.

В дополнение к персонализированному Email-маркетингу, загрузите узкий сегмент своих клиентов в Facebook или VK. Потом запустите в социальной сети рекламу на эту аудиторию и продвигайте свой продукт. Эти люди уже знают ваш бренд, а значит конверсия будет выше, чем при привлечении новых клиентов.

Настройте триггеры так, чтобы клиенты получали автоматические письма в определенные события, в день рождения или при отправке заказа.

Не считайте целью удержания – вытащить как можно больше денег из клиента.

Дарите потрясающий клиентский опыт, отправляйте персональный контент и индивидуальные предложения. Это даст больше выгод в долгосрочной перспективе. Это прибыльнее.

90% маркетологов почти не используют визуализацию данных в своей работе. А зря! Она понятнее для зрителя, нежели страницы текста. Она позволяет быстрее донести основные мысли до читателя.

Визуализацию и инфографику часто считают синонимами, но это не так.

Визуализация – это способ переводить данные в графическую форму. Инфографика – способ рассказать и последовательно объяснить какую-то тему. Визуализация является одним из ключевых элементов инфографики, но в то же время автономным.

Переводите ваши данные в красочный визуальный ряд. Это полезно для анализа. Удобнее изучать динамику продаж, когда у вас перед глазами есть график.

Предиктивный анализ относится к изучению данных о прошлом для вычисления вероятности будущем. Если у вас есть огромный объем информации, предиктивный анализ может помочь при внедрении нового продукта или услуги.

Те, кто работает в сфере торговли, знают, что лишь несколько продуктов приносят большую часть прибыли, в то время, как остальные товары неликвидные. По этой причине, расширение ассортимента может походить на азартную игру.

Netflix – это бренд, который мастерски владеет искусством предиктивного анализа. На основе огромного объема данных, Netflix устанавливает признаки потенциально успешного фильма или телешоу.

Предиктивный анализ позволил Netflix создать сериал «Карточный домик», который имеет огромный коммерческий успех. Звезду сериала Кевина Спейси и продюсера Дэвида Финчера подобрали неслучайно. Анализ данных показал, что зрители Netflix в восторге от их предыдущих работ.

Предиктивный анализ не сможет гарантировать успех при разработке нового продукта, но он существенно повысит ваши шансы.

Используйте предиктивный анализ для уменьшения коэффициента оттока. Составьте список клиентов, которые имеют высокую вероятность ухода. Одним из факторов оттока может быть период неактивности в личном кабинете.

Теперь разработайте и запустите кампанию для возврата. Это может быть предложение специальных бонусов, которые покажут клиенту, что вы им дорожите.

Изучите модели покупок клиентов. Это позволит делать прогноз продаж на будущее.

Посчитайте клиентские метрики: цену привлечения, средний чек, пожизненную ценность клиента. Так вы поймете, сколько выручки принесет каждый новый клиент в будущем. Если вы не считаете эти метрики, то вам сложно проводить эффективные маркетинговые мероприятия.

При прогнозе продаж рассчитывайте пессимистичный вариант. Прогноз – это вероятность и не может быть абсолютно достоверными. Имейте запасной план, если продажи пойдут не так хорошо, как ожидалось.

Работа с данными, аналитика и прочие сопутствующие элементы маркетинга, основанного на данных, регулярно попадают в списки основных трендов на год. Но распространенность этого подхода все равно растет низкими темпами. Многие маркетологи слабо владеют или не владеют вовсе статистическим аппаратом и не понимают, как работать с данными. И эта ситуация применима и к США, и к Европе, и к другим странам. Однако возможности аналитического подхода в маркетинге поистине безграничны. Они позволят увеличить эффективность кампаний в разы, лучше обосновывать мероприятия и выявлять ранее незаметные закономерности.

Помните, что маркетинг – это не только креативность, но еще и сухой математический расчет.

Источник

Почему Big Data постоянно путают с маркетингом и ИТ

Колонка преподавателей НИУ ВШЭ о мифах и кейсах работы с большими данными

Преподаватели Школы новых медиа НИУ ВШЭ Константин Романов и Александр Пятигорский, который также является директором по цифровой трансформации «Билайна», написали для vc.ru колонку о главных заблуждениях по поводу больших данных — примерах использования технологии и инструментах. Авторы предполагают, что публикация поможет руководителям компаний разобраться в этом понятии.

что такое биг дата в маркетинге. Смотреть фото что такое биг дата в маркетинге. Смотреть картинку что такое биг дата в маркетинге. Картинка про что такое биг дата в маркетинге. Фото что такое биг дата в маркетинге

Мифы и заблуждения о Big Data

Big Data — это не маркетинг

Термин Big Data стал очень модным — его используют в миллионах ситуаций и в сотнях разных интерпретаций, зачастую не имеющих отношения к тому, чем он является. Часто в головах людей происходит подмена понятий, и Big Data путают с маркетинговым продуктом. Более того, в некоторых компаниях Big Data является частью маркетингового подразделения. Результат анализа больших данных действительно может быть источником для маркетинговой активности, но не более того. Посмотрим, как это работает.

Если мы определили список тех, кто покупал в нашем магазине товары на сумму более трех тысяч рублей два месяца назад, а затем послали этим пользователям какое-то предложение, то это типичный маркетинг. Мы выводим понятную закономерность из структурных данных, и используем ее для увеличения продаж.

Однако если мы соединим данные CRM с потоковой информацией, например, из Instagram, и проанализируем их, то найдем закономерность: человеку, который снизил свою активность в среду вечером и на чьей последней фотографии изображены котята, следует сделать определенное предложение. Это уже будет Big Data. Мы нашли триггер, передали его маркетологам, а они его использовали в своих целях.

Из этого следует, что технология обычно работает с неструктурированными данными, а если данные и структурированы, то система всё равно продолжает искать в них скрытые закономерности, чего не делает маркетинг.

Big Data — это не ИТ

Вторая крайность этой истории: Big Data часто путают с ИТ. Это связано с тем, что в российских компаниях, как правило, именно ИТ-специалисты являются драйверами всех технологий, в том числе и больших данных. Поэтому, если всё происходит именно в этом отделе, для компании в целом создается впечатление, что это какая-то деятельность ИТ.

На самом деле, здесь есть коренное различие: Big Data — это деятельность, направленная на получение определенного продукта, что совсем не относится к ИТ, хотя без них технология и не может существовать.

Big Data — не всегда сбор и анализ информации

Есть ещё одно заблуждение относительно Big Data. Все понимают, что эта технология связана с большими объемами данных, но какого рода данные имеются в виду, не всегда ясно. Собирать и использовать информацию может каждый, сейчас это возможно не только в фильмах про Джеймса Бонда, но и в любой, даже совсем маленькой компании. Вопрос только в том, что именно собирать и как это использовать с пользой для себя.

Но следует понять, что технологией Big Data не будет являться сбор и анализ совершенно любой информации. Например, если вы соберете в социальных сетях данные о конкретном человеке, это не будет Big Data.

Что такое Big Data на самом деле

Big Data состоит из трех элементов:

Big Data — не что-то одно из этих составляющих, а связка всех трех элементов. Часто люди подменяют понятия: кто-то считает, что Big Data — это только данные, кто-то — что технологии. Но по факту, сколько бы данных вы ни собрали, вы ничего с ними не сделаете без нужных технологий и аналитики. Если есть хорошая аналитика, но нет данных, — тем более плохо.

Если говорить о данных, то это не только тексты, но и все фотографии, размещаемые в Instagram, и вообще всё, что можно проанализировать и использовать для разных целей и задач. Другими словами, под Data понимаются огромные объемы внутренних и внешних данных различных структур.

Также нужна аналитика, потому что задача Big Data — построить какие-то закономерности. То есть аналитика — это выявление скрытых зависимостей и поиск новых вопросов и ответов на основе анализа всего объема разнородных данных. Причем Big Data ставит вопросы, которые напрямую из этих данных не выводим.

Если говорить об изображениях, то факт размещения вами своего фото в голубой футболке ни о чем не говорит. Но если использовать фотографию для Big Data-моделирования, то может выясниться, что именно сейчас вам следует предложить кредит, потому что в вашей социальной группе такое поведение говорит об определенном феномене в действиях. Поэтому «голые» данные без аналитики, без выявления скрытых и неочевидных зависимостей Big Data не являются.

Итак, у нас есть большие данные. Их массив огромен. Также у нас есть аналитик. Но как сделать так, чтобы из этих сырых данных у нас родилось конкретное решение? Для этого нам нужны технологии, которые позволяют их не просто складировать (а раньше и это было невозможно), но и анализировать.

Проще говоря, если у вас есть много данных, вам потребуются технологии, к примеру, Hadoop, которые дают возможность сохранить всю информацию в первозданном виде для последующего анализа. Такого рода технологии возникли в интернет-гигантах, поскольку именно они первыми столкнулись с проблемой хранения большого массива данных и его анализа для последующей монетизации.

Кроме инструментов для оптимизированного и дешевого хранения данных, нужны аналитические инструменты, а также надстройки к используемой платформе. К примеру, вокруг Hadoop уже образовалась целая экосистема из связанных проектов и технологий. Вот некоторые из них:

Все эти инструменты доступны каждому бесплатно, но есть и набор платных надстроек.

Кроме того, нужны специалисты: это разработчик и аналитик (так называемый Data Scientist). Также необходим менеджер, способный понять, как эту аналитику применить для решения конкретной задачи, потому что сама по себе она совершенно бессмысленна, если ее не встраивать в бизнес-процессы.

Все три сотрудника должны работать в команде. Менеджер, который дает специалисту по Data Science задание найти определенную закономерность, должен понимать, что далеко не всегда найдется именно то, что ему нужно. В таком случае руководитель должен внимательно слушать, что же нашел Data Scientist, поскольку зачастую его находки оказываются более интересными и полезными для бизнеса. Ваша задача — применить это к бизнесу и сделать из этого продукт.

Несмотря на то, что сейчас есть множество разного рода машин и технологий, окончательное решение всегда остается за человеком. Для этого информацию нужно как-то визуализировать. Инструментов для этого довольно много.

Самый показательный пример — это геоаналитические отчеты. Компания «Билайн» много работает с правительствами разных городов и областей. Очень часто эти организации заказывают отчеты типа «Транспортная загруженность в определенном месте».

Понятно, что подобный отчет должен попасть к правительственным структурам в простой и понятной им форме. Если же мы предоставим им огромную и совершенно непонятную таблицу (то есть информацию в том виде, в каком ее получаем мы), они вряд ли купят такой отчет — он будет совершенно бесполезен, они не вынесут из него тех знаний, которые хотели получить.

Поэтому, какими бы хорошими ни были специалисты по Data Science и какие бы закономерности они ни находили, вы не сможете работать с этими данными без качественных инструментов визуализации.

что такое биг дата в маркетинге. Смотреть фото что такое биг дата в маркетинге. Смотреть картинку что такое биг дата в маркетинге. Картинка про что такое биг дата в маркетинге. Фото что такое биг дата в маркетинге

Источники данных

Массив получаемых данных очень велик, поэтому его можно разделить на некоторые группы.

Внутренние данные компании

Хотя к этой группе относится 80% собираемых данных, этот источник не всегда используют. Часто это данные, которые, казалось бы, вообще никому не нужны, например, логи. Но если посмотреть на них под другим углом, иногда можно найти в них неожиданные закономерности.

Условно бесплатные источники

Сюда относятся данные социальных сетей, интернета и всего, куда можно бесплатно проникнуть. Почему условно бесплатно? С одной стороны, эти данные доступны каждому, но если вы являетесь крупной компанией, то получать их в размерах абонентской базы в десятки тысяч, сотни или миллионы клиентов — уже непростая задача. Поэтому на рынке существуют платные сервисы по предоставлению этих данных.

Платные источники

Сюда относятся компании, которые продают данные за деньги. Это могут быть телекомы, DMP, интернет-компании, бюро кредитных историй и агрегаторы. В России телекомы не продают данные. Во-первых, это экономически невыгодно, а во-вторых, запрещено законом. Поэтому они продают результаты их обработки, например, геоаналитические отчеты.

Открытые данные

Государство идет навстречу бизнесу и дает возможность пользоваться данными, которые они собирают. В большей степени это развито на Западе, но Россия в этом плане тоже идет в ногу со временем. Например, существует Портал открытых данных Правительства Москвы, где публикуется информация по различным объектам городской инфраструктуры.

Для жителей и гостей Москвы данные представлены в табличном и картографическом виде, а для разработчиков — в специальных машиночитаемых форматах. Пока проект работает в ограниченном режиме, но развивается, а значит, тоже является источником данных, который вы можете использовать для своих бизнес-задач.

Исследования

Как уже отмечалось, задача Big Data — найти закономерность. Часто исследования, проводимые по всему миру, могут стать точкой опоры для нахождения той или иной закономерности — вы можете получить конкретный результат и попытаться применить похожую логику в своих целях.

Big Data — это область, в которой работают не все законы математики. Например, «1»+«1» — это не «2», а значительно больше, потому что при смешении источников данных можно значительно усилить эффект.

Примеры продуктов

Многие знакомы с сервисом по подбору музыки Spotify. Он прекрасен тем, что не спрашивает у пользователей, какое у них сегодня настроение, а сам вычисляет это на основе доступных ему источников. Он всегда знает, что вам нужно сейчас — джаз или тяжелый рок. Это то ключевое отличие, которое обеспечивает ему поклонников и отличает от других сервисов.

что такое биг дата в маркетинге. Смотреть фото что такое биг дата в маркетинге. Смотреть картинку что такое биг дата в маркетинге. Картинка про что такое биг дата в маркетинге. Фото что такое биг дата в маркетинге

Подобные продукты принято называть sense-продуктами — такими, которые чувствуют своего клиента.

Технологию Big Data применяют и в автомобилестроении. Например, это делает Tesla — в их последней модели есть автопилот. Компания стремится создать машину, которая сама будет везти пассажира туда, куда ему нужно. Без Big Data это невозможно, потому что если мы будем использовать только те данные, которые получаем напрямую, как это делает человек, то автомобиль не сможет усовершенствоваться.

что такое биг дата в маркетинге. Смотреть фото что такое биг дата в маркетинге. Смотреть картинку что такое биг дата в маркетинге. Картинка про что такое биг дата в маркетинге. Фото что такое биг дата в маркетинге

Когда мы ведем автомобиль сами, то с помощью наших нейронов принимаем решения, исходя из множества факторов, которых мы даже не замечаем. Например, мы можем не осознать, почему решили не газовать сразу на зеленый свет, а потом окажется, что решение было верным — мимо вас пронеслась машина на бешеной скорости, и вы избежали аварии.

Также можно привести пример использования Big Data в спорте. В 2002 году генеральный менеджер бейсбольной команды Oakland Athletics Билли Бин решил разрушить парадигму того, как нужно искать себе спортсменов — он выбрал и обучил игроков «по цифрам».

Обычно менеджеры смотрят на успехи игроков, но в данном случае всё было иначе — чтобы получить результат, менеджер изучал, какие комбинации спортсменов ему нужны, обращая внимания на индивидуальные характеристики. Причем спортсменов он выбрал таких, которые сами по себе не представляли большого потенциала, зато команда в целом получилась настолько успешной, что выиграла двадцать матчей подряд.

что такое биг дата в маркетинге. Смотреть фото что такое биг дата в маркетинге. Смотреть картинку что такое биг дата в маркетинге. Картинка про что такое биг дата в маркетинге. Фото что такое биг дата в маркетинге

Режиссер Беннетт Миллер в последствии снял фильм, посвященный этой истории, — «Человек, который изменил всё» в главной роли с Брэдом Питтом.

Технология Big Data полезна и в финансовом секторе. Ни один человек на свете не сможет самостоятельно и точно определить, стоит ли давать кому-то кредит. Для того, чтобы принять решение, производится скоринг, то есть строится вероятностная модель, по которой можно понять, вернет этот человек деньги или нет. Дальше скоринг применяется на всех этапах: можно, например, просчитать, что в определенный момент человек перестанет платить.

Большие данные позволяют не только заработать деньги, но и сэкономить их. В частности, эта технология помогла Министерству труда Германии сократить расходы на пособия по безработице на 10 млрд евро, так как после анализа информации стало понятно, что 20% пособий выплачивалось незаслуженно.

Также технологии применяются в медицине (особенно это характерно для Израиля). С помощью Big Data можно поставить значительно более точный анализ, чем это сделает врач с тридцатилетним стажем.

Любой доктор, когда ставит диагноз, опирается лишь на свой собственный опыт. Когда это делает машина, она исходит из опыта тысяч таких врачей и всех существующих историй болезни. Она учитывает то, из какого материала сделан дом пациента, в каком районе живет пострадавший, какая там задымленность и так далее. То есть она учитывает массу факторов, которые врачи не берут в расчет.

Примером использования Big Data в здравоохранении можно назвать проект Project Artemis, который внедрила Детская больница Торонто. Это информационная система, которая собирает и анализирует данные по младенцам в реальном времени. Машина позволяет анализировать 1260 показателей здоровья каждого ребенка ежесекундно. Этот проект направлен на прогноз нестабильного состояния ребенка и профилактику заболеваний у детей.

Большие данные начинают использовать и в России: например, подразделение больших данных есть у «Яндекса». Компания совместно с «АстраЗенекой» и Российским обществом клинической онкологии RUSSCO запустили платформу RAY, предназначенную для генетиков и молекулярных биологов. Проект позволяет улучшить методы диагностики рака и выявления предрасположенности к онкологическим заболеваниям. Платформа начнет работу в декабре 2016 года.

Другой проект Yandex Data Factory — «Снайпер», разработанный совместно с Магнитогорским металлургическим комбинатом и направленный на оптимизацию процессов плавки стали с помощью алгоритмов машинного обучения. Планируется, что конечный программный продукт будет выдавать оптимальное количество ферросплавов и добавочных материалов при производстве стали.

Big Data используется или может использоваться абсолютно во всех областях — вплоть до того, что данные мобильных операторов покупают даже службы водоснабжения. В частности, это характерно для Рима, где очень слабая система канализации, поэтому они с помощью Big Data прогнозируют активность в определенных частях города, что помогает им предотвращать прорывы труб и другие проблемы.

В общем, есть огромное число продуктов, которые строятся на Big Data. Они могут менять какую-то сферу тотально, как в здравоохранении, а могут лишь модифицировать ее, как в работе интернет-магазинов. В любом случае, Big Data открывает большие возможности. Нужно всего лишь научиться с ней работать.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *