что такое бесколлекторный мотор на квадрокоптере
Бесколлекторный мотор GoolRC типоразмера 3660 для настольной сверлилки
Нестандартное использование бесколлекторного мотора, в любительских целях.
Мотор 3660 мощный, позволяет устанавливать патроны на вал 5 мм.
Профильное назначение — двигатель для р/у машинок и прочей техники в масштабе 1:10, 1:8.
За подробностями под кат
Приветствую!
Сегодня будет немного рукоблудства на тему необычного использования модельных двигателей.
Бесколлекторный (или вентильный) двигатель — это разновидность электродвигателя переменного тока, у которого коллекторно-щеточный узел заменен бесконтактным полупроводниковым коммутатором, управляемым датчиком положения ротора. Иногда можно встретить такую аббревиатуру: BLDС — это brushless DC motor. Для простоты буду называть его двигатель-бесколлекторник или просто БК.
Бесколлекторные двигатели достаточно популярны из-за своей специфики: отсутствуют расходные материалы типа щеток, отсутствует угольная/металлическая пыль внутри от трения, отсутствуют искры (а это огромное направление взрыво и огне безопасных приводов/насосов). Используются начиная от вентиляторов и насосов заканчивая высокоточными приводами.
Основное применение в моделизме и любительских конструкциях: двигатели для радиоуправляемых моделей.
Общий смысл этих двигателей — три фазы и три обмотки (или несколько обмоток соединенных в три группы) управление которыми осуществляется сигналом в виде синусоиды или приближенной синусоиды по каждой из фаз, но с некоторым сдвигом. На рисунке простейшая иллюстрация работы трехфазного двигателя.
Соответственно, одним из специфичных моментов управления БК двигателями является применение специального контроллера-драйвера, который позволяет регулировать импульсы тока и напряжения по каждой фазе на обмотках двигателя, что в итоге дает стабильную работу в широком диапазоне напряжений. Это так называемые ESC контроллеры.
БК моторы для р/у техники бывают различных типоразмеров и исполнения. Одни из самых мощных это серии 22 мм, 36 мм и 40/42 мм. По конструкции они бывают с внешним ротором и внутренним (Outrunner, Inrunner). Моторы с внешним ротором по факту не имеют статичного корпуса (рубашки) и являются облегченными. Как правило, используют в авиамоделях, в квадракоптерах и т.п.
Двигатели с внешним статором проще сделать герметичными. Подобные применяют для р/у моделей, которые подвергаются внешним воздействиям тип грязи, пыли, влаги: багги, монстры, краулеры, водные р/у модели).
Например, двигатель типа 3660 можно запросто установить в р/у модель автомобиля типа багги или монстра и получить массу удовольствия.
Также отмечу различную компоновку самого статора: двигатели 3660 имеют 12 катушек, соединенных в три группы.
Это позволяет получить высокий момент на валу. Выглядит это примерно так.
Соединены катушки примерно вот так
Если разобрать двигатель и извлечь ротор, то можно увидеть катушки статора.
Вот что внутри 3660 серии
еще фото
Любительское применение подобным двигателей с высоким моментом — в самодельных конструкциях, где требуется малогабаритный мощный оборотистый двигатель. Это могут быть вентиляторы турбинного типа, шпиндели любительских станков и т.п.
Так вот, с целью установки в любительский станок для сверления и гравировки был взят набор бесколлекторного двигателя вместе с ESC контроллером
GoolRC 3660 3800KV Brushless Motor with ESC 60A Metal Gear Servo 9.0kg Set
Плюсом в наборе был сервопривод на 9 кг, что очень удобно для самоделок.
Характеристики бесколлекторного мотора GoolRC 3660:
Модель: GoolRC 3660
Мощность: 1200W
Рабочее напряжение: до 13V
Предельный ток: 92A
Обороты на вольт (RPM/Volt): 3800KV
Максимальные обороты: до 50000
Диаметр корпуса: 36mm
Длина корпуса: 60mm
Длина вала: 17mm
Диаметр вала: 5mm
Размер установочных винтов: 6 шт * M3 (короткие, я использовал М3*6)
Коннекторы: 4mm позолоченные «бананы» male
Защита: от пыли и влаги
Характеристики ESC контроллера:
Модель: GoolRC ESC 60A
Продолжительный ток: 60A
Пиковый ток: 320A
Применяемый аккумуляторные батареи: 2-3S Li-Po / 4-9S Ni-Mh Ni-Cd
BEC: 5.8V / 3A
Коннекторы (Вход): T plug male
Коннекторы (вызод.): 4mm позолоченные «бананы» female
Размеры: 50 х 35 х 34mm (без учета длины кабелей)
Защита: от пыли и влаги
Характеристики сервомашинки:
Рабочее напряжение: 6.0V-7.2V
Скорость поворота (6.0V): 0.16sec/60° без нагрузки
Скорость поворота (7.2V): 0.14sec/60° без нагрузки
Момент удержания (6.0V): 9.0kg.cm
Момент удержания (7.2V): 10.0kg.cm
Размеры: 55 х 20 х 38mm (Д * Ш * В)
Параметры комплекта:
Размер упаковки: 10.5 х 8 х 6 см
Масса упаковки: 390 гр
Фирменная упаковка с логотипом GoolRC
Состав комплекта:
1 * GoolRC 3660 3800KV Motor
1 * GoolRC 60A ESC
1 * GoolRC 9KG Servo
1 * Информационный листок
Размеры для справки и внешний вид двигателя GoolRC 3660 с указанием основных моментов
Теперь несколько слов о самой посылке.
Посылка пришла в виде небольшого почтового пакета с коробкой внутри
Доставлялась альтернативной почтовой службой, не почтой России, о чем и гласит транспортная накладная
В посылке фирменная коробочка GoolRC
Внутри комплект бесколлекторного двигателя типоразмера 3660 (36х60 мм), ESC-контроллера для него и сервомашинки с комплектом
Теперь рассмотрим весь комплект по отдельным составляющим. Начнем с самого главного — с двигателя.
ESC контроллер — это плата драйвера двигателя с преобразователем сигнала и мощными ключами. На простых моделях вместо корпуса используется термоусадка, на мощных — корпус с радиатором и активным охлаждением.
На фото контроллер GoolRC ESC 60A по сравнению с «младшим» братом ESC 20A
Обратите внимание: присутствует тумблер выключения-выключения на отрезке провода, который можно встроить в корпус устройства/игрушки
Присутствует полный комплект разъемов: входные Т-коннекторы, 4 мм бананы-гнезда, 3-пиновый вход управляющего сигнала
Силовые бананы 4 мм — гнезда, маркируются аналогично по цветам: желтый, оранжевый и синий. При подключении перепутать можно только умышленно
Входные Т-коннекторы. Аналогично перепутать полярность можно если вы очень сильный)))))
На корпусе присутствует маркировка с названием и характеристиками, что очень удобно
Охлаждение активное, работает и регулируется автоматически.
Для оценки размеров приложил PCB ruller
В наборе также присутствует сервомашинка GoolRC на 9 кг.
Плюс как и для любой другой сервомашинки в комплекте идет набор рычагов (двойной, крест, звезда, колесо) и крепежная фурнитура (понравилось, что есть проставки из латуни)
Макрофото вала сервомашинки
Пробуем закрепить крестообразный рычаг для фотографии
На самом деле интересно проверить заявленные зарактеристики — это металлический комплект шестерен внутри. Разбираем сервомашинку. Корпус сидит на герметике по кругу, а внутри присутствует обильная смазка. Шестерни и правда металлические.
Фото платы управления сервой
Для чего все это затевалось: для того, чтобы попробовать БК двигатель как сверлилку/гравировалку. Все таки заявлена пиковая мощность 1200Вт.
Я выбрал проект сверлильного станка для подготовки печатных плат на thingiverse. Там есть множество проектов для изготовления светильного настольного станка. Как правило, все эти проекты малогабаритные и предназначены для установки небольшого двигателя постоянного тока.
Я выбрал один из популярных проектов и доработал крепление в части держателей двигателя 3660 (родной двигатель был меньше и имел другие размеры креплений)
Привожу чертеж посадочных мест и габаритов двигателя 3660
В оригинале стоит более слабый двигатель. Вот эскиз крепления (6 отверстий для М3х6)
Скрин из программы для печати на принтере
Заодно напечатал и хомут для крепления сверху
Мотор 3660 с установленным цанговым патроном типа ER11
Для подключения и проверки БК мотора потребуется собрать следующую схему: источник питания, сервотестер или плата управления, ESC-контроллер двигателя, двигатель.
Я использую самый простой сервотестер, он также дает нужный сигнал. Его можно использовать для включения и для регулировки оборотов двигателя
При желании можно подключить микроконтроллер (Ардуино и т.п.). Привожу схему из интернета с подключением аутраннера и 30А контроллера. Скетчи найти не проблема.
Соединяем все, по цветам.
Источник показывает, что холостой ток контроллера небольшой (0.26А)
Теперь сверлильный станок.
Собираем все и крепим на стойку
Для проверки собираю без корпуса, потом допечатаю корпус, куда можно установить штатный выключатель, крутилку сервотестера
Еще одно применение подобного 3660 БК двигателя — в качестве шпинделя станков для сверления и фрезеровки печатных плат
Про сам станок обзор доделаю чуть позже. Будет интересно проверить гравировку печатных плат с помощью GoolRC 3660
Заключение
Наверх ▲
Двигатель качественный, мощный, крутящий момент с запасом подойдет под любительские цели.
Конкретно живучесть подшипников при боковом усилии при фрезеровки/гравировки покажет время.
Определенно существует выгода применения модельных двигателей в любительских целях, а также простота работы и сборки конструкций на них по сравнению с шпинделями для ЧПУ, которые дороже и требуют специального оборудования (источники питания с регулировкой оборотов, драйверы, охлаждение и т.п.).
При заказе пользовался купоном SALE15 со скидкой 5% на все товары магазина.
Дрон своими руками: Урок 3. Силовая установка.
Содержание
Введение
Теперь, когда вы выбрали или построили раму, следующим шагом будет выбор правильной силовой установки. Так как большинство существующих дронов являются электрическими, мы сосредоточимся на создании исключительно электрической тяги посредством бесколлекторных моторов постоянного тока. В состав силовой установки входят моторы, несущие винты (пропеллеры, сокр. пропы), ESC и аккумуляторная батарея.
1. Мотор
От того какие моторы вы будете использовать в своей сборке, будет зависеть, какую максимальную нагрузку сможет поднять дрон, а также сколько времени он сможет находиться в полёте. Силовая установка должна обязательно состоять из моторов одной марки и модели, такой подход обеспечит ей сбалансированную работу. При этом стоит отметь, что даже абсолютно одинаковые (Бренд/Модель) моторы могут иметь незначительную разницу в скорости, которую в последующем выравнивает полётный контроллер.
Brushed vs Brushless
В коллекторных (Brushed) моторах ротор с обмоткой вращается внутри статора на котором магниты зафиксированы жёстко. В бесколлекторных (Brushless) моторах всё на оборот; обмотка крепится жёстко к внутренней части статора, а магниты установлены на валу и вращаются. В большинстве случаев вы будете рассматривать только бесколлекторные моторы (БК) постоянного тока. Моторы такого типа широко используются в индустрии радиолюбителей при сборке различных продуктов, начиная от вертолётов и самолётов и заканчивая системами привода в автомобилях и катерах.
Бесколлекторные моторы типа «Pancake» имеют больший диаметр, они более плоские и как правило имеют высокий крутящий момент и более низкое значение KV (детали ниже). В БПЛА небольших размеров (обычно размером с ладонь) чаще всего используют маленькие коллекторные моторы из-за более низкой цены и простого двухпроводного контроллера. Несмотря на то, что бесколлекторные моторы могут быть разных размеров и иметь разные характеристики, выбор меньшего размера совсем не означает, что будет дешевле.
Inrunner vs Outrunner
Существует несколько типов бесколлекторных моторов постоянного тока:
Рейтинг KV – макс. число оборотов, которое может развить мотор без потери в мощности при заданном напряжении. Для большинства многороторных БЛА актуально низкое значение KV (например, от 500 до 1000), поскольку это способствует обеспечению стабильности. В то время как для акробатического полёта будет актуальным значение KV между 1000 и 1500, в тандеме с несущими винтами (пропеллерами) меньшего диаметра. Допустим, значение KV для конкретного мотора составляет 650 об/вольт, то при напряжении в 11.1В мотор будет вращаться со скоростью: 11.1 × 650 = 7215 об/мин, а если вы будете использовать мотор при более низком напряжении (скажем, 7.4В), то частота вращения составит: 7.4 × 650 = 4810 об/мин. При этом важно отметить, что использование низкого напряжения, как правило означает, что потребление тока будет выше (Мощность = Ток × Напряжение).
Некоторые производители бесколлекторных моторов могут указывать в спецификации информацию о максимально возможной тяге (Thrust) создаваемой мотором в купе с рекомендуемым несущим винтом. Единицей измерения тяги, как правило, являются килограмм (Кг/Kg), фунт (Lbs) или Ньютон (N). Например, если вы строите квадрокоптер и вам известно, значение тяги отдельно взятого мотора = до 0.5кг в купе с 11-дюймовым несущим винтом, то на выходе четыре таких мотора смогут поднять на максимальной тяге: 0.5кг × 4 = 2кг. Соответственно, если общий вес вашего квадрокоптера составляет чуть менее 2кг, то c такой силовой установкой он будет взлетать только на максимальных оборотах (макс. тяге). В данном случае будет актуальным, либо выбрать более мощную связку «мотор + несущий винт», которые позволят обеспечить большую тягу, либо уменьшить общую массу беспилотника. При макс. тяге силовой установки = 2кг, вес дрона должен составлять не более половины этого значения (1кг, включая вес самих моторов). Аналогичный расчёт можно сделать для любой конфигурации. Предположим, что вес гексакоптера (включая раму, моторы, электронику, аксессуары и т.д.) составляет — 2.5кг. Значит каждый двигатель для такой сборки должен обеспечивать (2.5кг ÷ 6 моторов) × 2 = 0.83кг тяги (или более). Теперь вы знаете как рассчитать оптимальную тягу моторов исходя из общего веса, но прежде чем принимать решение, предлагаем ознакомиться с разделами ниже.
Дополнительные соображения
2. Несущие винты (Пропеллеры)
Несущие винты (пропеллеры, сокр. пропы) для многороторных БЛА берут своё начало от винтов радиоуправляемых самолётов. Многие спросят: почему бы не использовать лопасти вертолёта? Несмотря на то, что это уже было сделано, представьте себе размеры гексакоптера с лопастями от вертолёта. Также стоит отметить, что вертолётная система требует изменения шага лопастей, а это существенно усложняет конструкцию.
Вы также можете спросить, почему бы не использовать турбореактивный двигатель, турбовентиляторный двигатель, турбовинтовой двигатель и т.д? Безусловно они невероятно хороши для обеспечения большой тяги, но при этом требуют большое количество энергии. Если первостепенной задачей беспилотника является очень быстрое перемещение, а не зависание в ограниченном пространстве, один из выше перечисленных двигателей может быть хорошим вариантом.
Лопасти и диаметр
Несущие винты большинства мультироторных БЛА имеют две, либо три лопасти. Наибольшее применение получили винты с двумя лопастями. Не думайте, что добавление большего количества лопастей автоматически приведёт к увеличению тяги; каждая лопасть работает в потоке, возмущенном предыдущей лопастью, снижая КПД пропеллера. Несущий винт малого диаметра имеет меньшую инерцию и следовательно его легче ускорять и замедлять, что актуально при акробатическом полёте.
Шаг/Угол Атаки/Эффективность/Тяга
Тяга, создаваемая несущим винтом, зависит от плотности воздуха, числа оборотов винта, его диаметра, формы и площади лопастей, а также от его шага. Эффективность винта связана с углом атаки, который определяется как шаг лопасти минус угол спирали (угол между результирующей относительной скоростью и направлением вращения лопасти). Сама эффективность — это отношение выходной мощности к входной. Большинство хорошо спроектированных винтов имеют КПД более 80%. На угол атаки влияет относительная скорость, поэтому пропеллер будет иметь разную эффективность при разных скоростях мотора. На эффективность также сильно влияет передний край лопасти несущего винта, и очень важно, чтобы он был максимально гладким. Несмотря на то, что конструкция с переменным шагом была бы наилучшей, дополнительная сложность, необходимая по сравнению с присущей многороторной простотой, означает, что пропеллер с переменным шагом почти никогда не используется.
Вращение
Несущие винты рассчитаны на вращение по часовой стрелке (CW), либо против часовой стрелки (CCW). На направление вращения указывает наклон лопасти (смотреть на пропеллер с торца). Если правая кромка лопасти выше — CCW, если левая кромка — CW. Если конструкция вашего беспилотника подразумевает перевёрнутое расположение моторов (как в случае с конфигурациями Vtail, Y6, X8) обязательно измените направление вращения несущих винтов, чтобы тяга была направлена вниз. Лицевая сторона несущего винта всегда должна быть обращена к небу. Документация которая идёт с контроллером полёта как правило содержит информацию о направлении вращения каждого винта, для каждой поддерживаемой контроллером многомоторной конфигурации.
Материалы исполнения
Материал(ы), используемые для изготовления несущих винтов (пропеллеров), могут оказывать умеренное влияние на лётные характеристики, но безопасность должна быть главным приоритетом, особенно, если вы новичок и не опытны.
Складные
Складные пропы имеют центральную часть, которая соединяется с двумя поворотными лопастями. Когда центр (который соединен с выходным валом мотора) вращается, центробежные силы действуют на лопасти, выталкивая их наружу и по существу делая пропеллер «жёстким», с тем же эффектом, что и классический не складываемый винт. Из-за низкого спроса и большого количества требуемых деталей, складные пропеллеры встречаются реже. Основное преимущество складных пропов это компактность, а в сочетании со складной рамой, транспортировочные размеры дрона могут быть значительно меньше полётных. Сопутствующим преимуществом складного механизма является отсутствие необходимости, при краше, менять винт целиком, достаточно будет заменить только повреждённую лопасть.
Установка
Как и БЛА, несущие винты могут имеют широкий диапазон размеров. Таким образом, в этой отрасли существует целый ряд «стандартных» диаметров вала двигателя. В связи с чем несущие винты часто поставляются с небольшим набором переходных колец (выглядят как шайбы с отверстиями разного диаметра в центре), которые устанавливают в центральное посадочное отверстие пропа, в случае если диаметр отверстия несущего винта оказался больше диаметра вала используемого мотора. Так как не все разработчики комплектуют пропы набором таких переходных колец, рекомендуется заблаговременно сверять диаметр отверстия приобретаемых пропов с диаметров вала вашего мотора.
Фиксироваться винт на моторе может исходя из того, какой из способов крепления поддерживает ваш мотор. Если вал мотора не подразумевает никаких вариантов крепежа (резьб. соединение, различные приспособления для крепления и т.д.), в таком случае применяются специальные адаптеры, такие как пропсейверы и цанговые зажимы.
Бесколлекторные моторы с наружным ротором (типа «Outrunner») как правило, в верхней его части, имеют несколько резьбовых отверстий рассчитанных под установку различных адаптеров и креплений. Не менее популярным вариантом крепления пропеллера на валу БК мотора является самозатягивающая гайка. Вал такого мотора на конце имеет резьбу, направление которой противоположно направлению вращения ротора. Такой подход исключает самопроизвольное откручивание фиксирующей гайки, обеспечивая безопасную и надежную эксплуатацию дрона.
Защита несущих винтов
Защита несущих винтов – призвана исключить прямой контакт силовой установки БЛА с встречным объектом, сохранив тем самым её целостность и работоспособность, а также не допустить получение травм о быстро вращающиеся пропеллеры в результате столкновения с людьми и животными. Защита пропеллеров крепится к основной раме. В зависимости от варианта исполнения может как частично перекрывать рабочую зону силовой установки, так и полностью (кольцевая защита). Защита винтов чаще всего применяется на небольших (игрушечных) БЛА. Применение в сборке элементов защиты несёт и ряд компромиссов, среди которых:
Балансировка
Неудовлетворительная балансировка имеет место быть у большинства недорогих пропеллеров. Чтобы в этом убедиться, далеко ходить не надо, достаточно вставить в центральное посадочное отверстие винта карандаш (как правило при дисбалансе одна сторона будет тяжелее другой). В связи с чем настоятельно рекомендуется проводить балансировку своих пропов, перед тем как устанавливать их на моторы. Несбалансированный пропеллер будет вызывать избыточные вибрации, которые в свою очередь отрицательно влияют на работу полётного контролера (проявляется в некорректном поведении дрона в полёте), не говоря уже об увеличении шумности, повышенном износе элементов силовой установки и ухудшении качества съёмки подвешенной камеры.
Пропеллер может быть уравновешен разными способами, но если вы строите беспилотник с нуля, то в арсенале инструментов обязательно должен быть недорогой балансир пропеллеров, позволяющий легко и просто определять дисбаланс веса в винте. Для выравнивания веса, вы можете либо отшлифовать наиболее тяжёлую часть пропа (равномерно шлифуется центральная часть лопасти, и не в коем случае не отрезайте часть пропеллера), также можно балансировать путём наклеивания отрезка скотча (тонкий) на более лёгкую лопасть (добавляете отрезки равномерно до тех пор пока не будет достигнут баланс). Обратите внимание, что чем дальше от центра вы делаете балансировочную модернизацию (шлифование или добавление ленты) пропеллера, тем больше будет эффект, основанный на принципе крутящего момента.
3. ESC
ESC (англ. Electronic Speed Controller; рус. электронный контроллер скорости) — позволяет полётному контроллеру управлять скоростью и направлением вращения мотора. При правильном напряжении, ESC должен выдерживать макс. ток, который может потреблять мотор, а также ограничивать ток проходящий через фазу при коммутации. Большинство ESC, применяемых в беспилотном хобби, позволяют мотору вращаться только в одном направлении, однако с правильной прошивкой они могут работать в обоих направлениях.
Подключение
Изначально ESC может сбивать с толку, потому что для его подключения доступно несколько проводов/контактов/коннекторов, доступных с двух сторон (ESC может приходить как с уже припаянными коннекторами, так и без).
Во времена зарождения авиамоделизма в качестве силовой установки использовался двигатель внутреннего сгорания, а питание бортовой электроники осуществлялось от небольшой батареи. С приходом электрической тяги и регуляторов (ESC), в последние, стали включать так называемую цепь устранения батареи — BEC (на англ. Battery Eliminator Circuit; или преобразователь бортового питания; как правило, обеспечивает дополнительный источник тока напряжением 5В при силе тока 1А, либо выше). Иными словами это преобразователь напряжения используемой в сборке LiPo в напряжение для питания бортовой электроники беспилотника.
При сборке мультиротора необходимо подключить все ESC к контроллеру полёта, но потребуется только один BEC, иначе могут возникнуть проблемы при подаче питания на одни и те же линии. Поскольку обычно нет способа отключить BEC на ESC, лучше всего удалить красный провод (+) и обмотать его изолентой для всех ESC, кроме одного. Также важно оставить чёрный провод (земля) для общего заземления.
Прошивка
Не все существующие на рынке ESC одинаково хороши для применения в мультироторных сборках. Важно понимать, что до появления многомоторных БЛА, бесколлекторные моторы использовались в первую очередь в качестве силовой установки радиоуправляемых автомобилей, самолётов и вертолётов. Большинство из них не требуют быстрого времени отклика или обновления. ESC с встроенным программным обеспечением SimonK или BLHeli способны очень быстро реагировать на входящие изменения, что в целом предопределяет разницу между стабильным полётом или крашем.
Распределение питания
Поскольку каждый ESC питается от основной батареи, основной разъем АКБ должен быть как-то разделен на четыре ESC. Для этого используется плата распределения питания или жгут распределения питания. Эта плата (или кабель) разделяет положительные и отрицательные клеммы основного аккумулятора на четыре. Важно отметить, что типы разъёмов, используемых на аккумуляторе, ESC и распределительной плате, могут не совпадать, поэтому лучше по возможности выбирать «стандартный» разъём (например, Deans), который используется повсеместно. Многие недорогие платы могут требовать пайки, в данном случае пользователь решает сам какой конкретный разъём ему использовать в сборке. Самый простой распределитель питания может включать в себя два входных клеммных блока, либо пайку всех положительных соединений вместе, а затем всех отрицательных соединений вместе …
4. Аккумулятор
Химия
Батареи, используемые в беспилотных летательных аппаратах, в настоящее время исключительно литий-полимерный (LiPo), причем состав некоторых из них бывает достаточно экзотичным — литий-марганцевые или другие варианты лития. Свинцовая кислота просто не подходит, а NiMh/NiCd все еще слишком тяжелы для своей ёмкости и часто не могут обеспечить требуемые высокие скорости разряда. LiPo предлагает высокую производительность и скорость разряда при небольшом весе. Недостатками являются их сравнительно высокая стоимость и постоянные проблемы с безопасностью (пожароопасны).
Напряжение
На практике вам потребуется только один аккумулятор для вашего БПЛА. Напряжение этой батареи должно соответствовать выбранным вами БК моторам. Почти все АКБ, используемые в наши дни, основаны на литии и содержат несколько элементов (банок) по 3.7В каждая, где 3.7В = 1S (т.е однобаночная АКБ; 2S – двух баночная и т.д.). Поэтому батарея с маркировкой 4S, вероятно, будет иметь номинальное значение: 4 × 3.7В = 14.8В. Также количество банок поможет вам определить, какое зарядное устройство необходимо использовать. Отметим, что однобаночная батарея большой ёмкости физически может выглядеть как многобаночная батарея низкой ёмкости.
Ёмкость
Ёмкость аккумуляторной батареи измеряется в ампер-часах (Ач). Аккумуляторы небольших размеров могут иметь ёмкость от 0.1Ач (100 мАч), ёмкость АКБ для беспилотных летательных аппаратов среднего размера может варьироваться от 2-3Ач (2000 мАч — 3000 мАч). Чем выше ёмкость, тем дольше время полёта, и соответственно тяжелей АКБ. Время полёта обычного БПЛА может находится в интервале 10-20 минут, что может показаться недолгим, но вы должны понимать, что беспилотник в процессе полёта постоянно борется с гравитацией, и в отличие от самолёта, он не имеет поверхностей (крыльев) обеспечивающих помощь в виде оптимальной подъёмной силы.
Скорость разряда
Скорость разряда от литиевой батареи измеряется в «C», где 1C — ёмкость батареи (обычно в ампер-часах, если вы не рассматриваете дрон размером с ладонь). Скорость разряда большинства LiPo батарей составляет не менее 5C (в пять раз больше ёмкости), но, так как большинство моторов, используемых в мультироторных БЛА, потребляют большой ток, батарея должна иметь возможность разряжаться при невероятно высоком значении тока, который, как правило, составляет порядка 30А или более.
Безопасность
LiPo АКБ не совсем безопасны, так как они содержат газообразный водород под давлением и имеют тенденцию гореть и/или взрываться, когда что-то не так. Таким образом, если у вас есть какие-либо сомнения относительно работоспособности аккумулятора, не в коем случае, не подключайте его к беспилотнику или даже к зарядному устройству — считайте его «списанным» и утилизируйте его надлежащим образом. Контрольные признаки того, что с аккумулятором что-то не так это вмятины или вздутие (т.е. утечка газа). При зарядке LiPo батареи лучше всего использовать безопасные LiPo ящики (Battery safe box). Хранение батареи также лучше осуществляться в этих ящиках. В случае краша, первое, что вам нужно сделать, это отключить и проверить аккумулятор. Батарея исполненная в боксе может увеличить вес, но при этом реально поможет защитить АКБ при краше. Некоторые производители продают аккумуляторы с жестким чехлом и без него.
Зарядка
Большинство LiPo аккумуляторов имеют два разъема: один предназначен для использования в качестве основных «разрядных» проводов, способных выдерживать большой ток, а другой, обычно меньшего размера и короче, является разъёмом для зарядки (как правило белый JST разъём), в котором один контакт соответствует заземлению, а остальные, количеству банок АКБ. Его вы подключаете к зарядному устройству, посредством которого осуществляется зарядка (и балансировка) каждой банки батареи. Зарядное устройство обязательно должно сообщать, когда зарядка завершена, и, учитывать проблемы безопасности связанные с литий-полимерными батареями. После окончания процесса зарядки, лучше всего сразу отсоединять аккумулятор от зарядного устройства.
Монтаж
Аккумуляторная батарея является самым тяжелым элементом беспилотника, поэтому её следует устанавливать в центральной мёртвой точке, чтобы обеспечить одинаковую нагрузку на моторы. Аккумуляторная батарея не подразумевает какого-либо специального монтажа (особенно саморезы, которые могут повредить LiPo и вызвать возгорание), поэтому некоторые используемые сегодня методы монтажа включают в себя ремни на липучке, резиновые, пластиковые отсеки и другие. Самым распространённым вариантом монтажа АКБ является подвешивание батареи под рамой с помощью ремня с липучкой.