что такое базовый тип
1. Базовые типы данных
1. Базовые типы данных
Типы данных, как и отношения, делятся на базовые и виртуальные.
(О виртуальных типах данных мы поговорим чуть позже, посвятим этой теме отдельную главу.)
Базовые типы данных – это любые типы данных, заданные в системах управления базами данных изначально, т. е. присутствующие там по умолчанию (в отличие от пользовательского типа данных, который мы проанализируем сразу после прохождения типа данных базового).
Прежде чем перейти к рассмотрению собственно базовых типов данных, перечислим, каких типов данные вообще бывают:
2) логические данные;
3) строковые данные;
4) данные, определяющие дату и время;
5) идентификационные данные.
В системах управления базами данных по умолчанию ввели несколько наиболее распространенных типов данных, каждый из которых принадлежит какому-то из перечисленных типов данных.
1. В числовом типе данных выделяют:
1) Integer. Этим ключевым словом обычно обозначают целый тип данных;
2) Real, соответствующий вещественному типу данных;
3) Decimal (n, m). Это десятичный тип данных. Причем в обозначении n – это число, фиксирующее общее количество знаков числа, а m показывает, сколько символов из них стоит после десятичной точки;
4) Money или Currency, введен специально для удобного представления данных денежного типа данных.
2. В логическом типе данных обычно выделяют только один базовый тип, это Logical.
3. Строковый тип данных насчитывает четыре базовых типа (имеются в виду, разумеется, наиболее распространенные):
1) Bit (n). Это строки бит с фиксированной длиной n;
2) Varbit (n). Это тоже строки бит, но с переменной длиной, не превышающей n бит;
3) Char (n). Это строки символов с постоянной длиной n;
4) Varchar (n). Это строки символов, с переменной длиной, не превышающей n символов.
4. Тип дата и время включает в себя следующие базовые типы данных:
1) Date – тип данных даты;
2) Time – тип данных, выражающих время суток;
3) Date-time – тип данных, выражающий одновременно и дату, и время.
5. Идентификационный тип данных содержит в себе только один включенный по умолчанию в систему управления базами данных тип, и это GUID (глобальный уникальный идентификатор).
Необходимо заметить, что все базовые типы данных могут иметь варианты различного по диапазону представления данных. Приведем пример: вариантами четырехбайтового типа данных integer могут быть восьмибайтовые (bigint) и двухбайтовые (smallint) типы данных.
Поговорим отдельно о базовом типе данных GUID. Этот тип предназначен для хранения шестнадцатибайтовых значений так называемого глобального уникального идентификатора. Все различные значения этого идентификатора генерируются автоматически при вызове специальной встроенной функции NewId (). Это обозначение происходит от полного английского словосочетания New Identification, что в переводе буквально и означает «новое значение идентификатора». Каждое генерируемое на конкретном компьютере значение идентификатора уникально в пределах всех производимых компьютеров.
GUID-идентификатор используется, в частности, для организации репликации баз данных, т. е. при создании копий каких-то уже имеющихся баз данных.
Такие GUID-идентификаторы могут быть использованы и разработчиками баз данных наравне с другими базовыми типами.
Промежуточное положение между типом GUID и другими базовыми типами занимает еще один специальный базовый тип – тип счетчика.
Значения этого типа Counter обязательно являются целочисленными.
Необходимо отметить, что работа с этим базовым типом данных включает в себя ряд очень интересных особенностей. Например, значения этого типа Counter не задаются, как мы привыкли при работе со всеми другими типами данных, они генерируются по требованию, почти как для значений типа глобального уникального идентификатора. Также необычно, что тип счетчика может быть задан только при определении таблицы и только тогда! В программном коде этот тип использовать нельзя. Еще нужно помнить, что и при определении таблицы тип счетчика может быть задан исключительно для одного столбца.
Значения данных типа счетчик генерируются автоматически при вставки строк. Причем эта генерация проводится без повторений, так что счетчик всегда будет уникально идентифицировать каждую строку. Но это создает некоторые неудобства при работе с таблицами, содержащими данные типа счетчик. Если, например, данные в отношении, заданном таблицей, изменятся и их придется удалить или поменять местами, значения счетчика легко могут «спутать карты», особенно если работает неопытный программист. Приведем пример, иллюстрирующий подобную ситуацию. Пусть дана следующая таблица, представляющая какое-то отношение, в которую введены четыре строки:
Счетчик каждой новой строке автоматически дал уникальное имя.
И пусть теперь необходимо удалить вторую и четвертую строчки из таблицы, а потом добавить одну дополнительную строчку. Эти операции приведут к следующему преобразованию исходной таблицы:
Таким образом, счетчик удалил вторую и четвертую строчки вместе с их уникальными именами, а не стал «переприсваивать» их новым строчкам, как можно было ожидать. Причем изменить вручную значение счетчика система управления базами данных никогда не позволит, так же как она не позволит объявить в одной таблице несколько счетчиков одновременно.
Обычно счетчик используется как суррогатный, т. е. искусственный ключ в таблице.
Интересно знать, что уникальных значений четырехбайтового счетчика при скорости генерации одно значение в секунду хватит более чем на 100 лет. Покажем, как это подсчитано:
1 год = 365 дней * 24 ч * 60 с * 60 с 25 с.
2 4*8 значений / 1 значение/секунду = 2 32 с > 2 7 год > 100 лет.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
Типы данных
Типы данных Приведенные в этой главе таблицы взяты непосредственно из оперативной справочной системы и представляют единую модель данных Windows (Windows Uniform Data Model). Определения типов можно найти в заголовочном файле BASETSD.H, входящем в состав интегрированной среды разработки
Типы данных
Типы данных В JScript поддерживаются шесть типов данных, главными из которых являются числа, строки, объекты и логические данные. Оставшиеся два типа — это null (пустой тип) и undefined (неопределенный
14.5.1 Типы данных
14.5.1 Типы данных Файл может содержать текст ASCII, EBCDIC или двоичный образ данных (существует еще тип, называемый локальным или логическим байтом и применяемый для компьютеров с размером байта в 11 бит). Текстовый файл может содержать обычный текст или текст, форматированный
20.10.3 Типы данных MIB
20.10.3 Типы данных MIB Причиной широкого распространения SNMP стало то, что проектировщики придерживались правила «Будь проще!»? Все данные MIB состоят из простых скалярных переменных, хотя отдельные части MIB могут быть логически организованы в таблицы.? Только небольшое число
Типы данных
Типы данных Несмотря на то, что типы данных подробно описаны в документации (см. [1, гл. 4]), необходимо рассмотреть ряд понятий, которые будут часто использоваться в последующих главах книги. Помимо изложения сведений общего характера будут рассмотрены также примеры
Типы данных
Типы данных Один из этапов проектирования базы данных заключается в объявлении типа каждого поля, что позволяет процессору базы данных эффективно сохранять и извлекать данные. В SQL Server предусмотрено использование 21 типа данных, которые перечислены в табл. 1.1.Таблица 1.1.
Базовые типы данных
Глава 2 Ввод данных. Типы, или форматы, данных
Глава 2 Ввод данных. Типы, или форматы, данных Работа с документами Excel сопряжена с вводом и обработкой различных данных, то есть ин формации, которая может быть текстовой, числовой, финансовой, статистической и т. д. МУЛЬТИМЕДИЙНЫЙ КУРС Методы ввода и обработки данных
Базовые типы данных
Базовые типы данных В языке Си реализован набор типов данных, называемых «базовыми» типами. Спецификации этих типов перечислены в таблице 3.1.Таблица 3.1. Базовые типы Спецификация типов Целые signed char знаковый символьный signed int знаковый целый signed short int знаковый
Базовые типы и указатели
Базовые типы и указатели Синтаксис:= Значение выражения присваивается переменной. При необходимости выполняются правила преобразования типов.Примеры:int х = 10, у = 20; /* пример 1 */register int *рх = 0; /* пример 2 */int с = (3*1024); /* пример 3 */int *b = &x; /* пример 4 */В первом примере
Типы данных
Типы данных Многие языки программирования при объявлении переменной требуют указывать, какой тип данных будет ей присваиваться. Например, в языке Java кодint i = 15;объявит переменную целого типа int с именем i и присвоит ей значение 15. В этом случае тип данных ставится в
Типы данных
Типы данных Обзор типов Типы в PascalABC.NET подразделяются на простые, строковые, структурированные, типы указателей, процедурные типы и классы.К простым относятся целые и вещественные типы, логический, символьный, перечислимый и диапазонный тип.К структурированным типам
12.2. Типы баз данных
12.2. Типы баз данных Группу связанных между собой элементов данных называют обычно записью. Известны три основных типа организации данных и связей между ними: иерархический (в виде дерева), сетевой и реляционный.Иерархическая БДВ иерархической БД существует
5.2.4. Типы данных
5.2.4. Типы данных Мы можем вводить в ячейки следующие данные: текст, числа, даты, также приложение Numbers предоставляет возможность добавлять флажки, ползунки и другие элементы управления. Аналогично MS Excel для выравнивания чисел, дат и текстовых данных в Numbers существуют
Структура языка программирования
Содержание
Дополнительно
Классификация типов данных
Для простых типов данных определяются границы диапазона и количество байт, занимаемых ими в памяти компьютера.
В большинстве языков программирования, простые типы жестко связаны с их представлением в памяти компьютера. Компьютер хранит данные в виде последовательности битов, каждый из которых может иметь значение 0 и 1. Фрагмент данных в памяти может выглядеть следующим образом
Данные на битовом уровне (в памяти) не имеют ни структуры, ни смысла. Как интерпретировать данные, как целочисленное число, или вещественное, или символ, зависит от того, какой тип имеют данные, представленные в этой и последующих ячейках памяти.
Числовые типы данных
Целочисленные типы данных
Исходя из машинного представления целого числа, в ячейке памяти из n бит может хранится 2 n для беззнаковых, и 2 n-1 для знаковых типов.
Рассмотрим теперь конкретные целочисленные типы в трёх языках.
У некоторых типов есть приписка «16 разрядов» или «32 разряда». Это означает, что в зависимости от разрядности операционной системы и компилятора данный тип будет находится в соответствующем диапазоне. По-этому, рекомендуется не использовать int, unsigned int, а использовать их аналоги, но уже жестко определенные, short, long, unsigned short, unsigned long.
В Java нет беззнаковых целочисленных типов данных.
Вещественные типы данных
Числа вещественного типа данных задаются в форме чисел с плавающей запятой.
Плавающая запятая — форма представления действительных чисел, в которой число хранится в форме мантиссы и показателя степени. В случае языков программирования, любое число может быть представлено в следующем виде
Вывод: вещественные типы данных, в отличии от целочисленных, характеризуются диапазоном точности и количеством значащих разрядов.
Рассмотрим конкретные типы данных в наших трёх языках.
Тип decimal создан специально для операций высокой точности, в частности финансовых операций. Он не реализован как примитивный тип, по-этому его частое использование может повлиять на производительность вычислений.
Символьный тип данных
Значение переменной этого типа данных представляет собой один символ. В действительности, это есть целое число. В зависимости от кодировки, это число превращается в некий символ. Данные типы данных характеризуются лишь размером выделяемой под них памяти.
Логический тип данных
Перечислимый тип данных
Во внутреннем представлении, это целочисленный тип данных, только здесь пользователь вместо числе использует заранее определенные строковые значения.
Чтобы прочувствовать эту концепцию, приведем пример на языке С++ (в С# и Java аналогично)
Теперь переменные перечислимого типа Forms могут принимать лишь значения, определенные в примере кода. Это очень удобно, ведь мы уже оперируем не с числами, а с некими смысловыми значениями, замечу лишь, что для компьютера эти значения всё-равно являются целыми числами.
Массив
Каждый массив характеризуется типом данных его элементов, который может быть как простым, так и сложным, то есть любым.
В языках программирования нельзя оперировать всем массивом, работают с конкретным элементом. Чтобы доступиться до него в трёх рассматриваемых нами языках используют оператор «[]».
Структура
Структуры реализованы в языке программирования, чтобы собрать некие близки по смыслу вещи воедино.
Например, есть колесо автомобиля. У колеса есть диаметр, толщина, шина. Шина в свою очередь является структурой, у которой есть свои параметры: материал, марка, чем заполнена. Естественно, для каждого параметра можно создать свою переменную или константу, у нас появится большое количество переменных, которые, чтобы понять к чему они относятся, нужно в именах общую часть выделять. Имена будут нести лишнюю смысловую нагрузку. Получается запутанная история. А так мы определяем две структуры, а затем параметры в них.
Класс
Еще одним пользовательским типом данных является класс. Класс умеет всё, что и структура, но кроме параметров, у него есть и методы, и поддерживает большое количество вещей, связанных с объектно-ориентированным программированием.
Переменные и базовые типы данных языка С
Теоретическая часть
Стандарт С89 определяет пять базовых типов данных [2.4]:
float – вещественное число одинарной точности с плавающей точкой;
double – вещественное число двойной точности с плавающей точкой;
char – символьный тип для определения одного символа;
void – тип без значения.
Объект типа char всегда занимает 1 байт памяти [2.4]. Размеры объектов других типов, как правило, зависят от среды программирования и операционной системы.
Приведем модификаторы базовых типов данных. К ним относятся следующие спецификаторы, предшествующие им в тексте программы [2.4]:
В табл. 2.1 приведены допустимые комбинации типов данных языка С с их минимальным диапазоном значений и типичным размером [13].
Типы данных языка С | ||
---|---|---|
Тип данных | Типичный размер в битах | Минимально допустимый диапазон значений |
char | 8 (или 1 байт) | от –128 до 127 |
unsigned char | 8 | от 0 до 255 |
signed char | 8 | от –128 до 127 |
int | 16 или 32 | от –32768 до 32767 |
unsigned int | 16 или 32 | от 0 до 65535 |
signed int | 16 или 32 | от –32767 до 32767 |
short int | 16 | от –32767 до 32767 |
unsigned short int | 16 | от 0 до 65535 |
signed short int | 16 | от –32767 до 32767 |
long int | 32 | от –2147483648 до 2147483647 |
long long int | 64 | от –(2 63 –1 ) до (2 63 –1) для С99 |
signed long int | 32 | от –2147483647 до 2147483647 |
unsigned long int | 32 | от 0 до 4294967295 |
unsigned long long int | 64 | от 0 до (2 64 –1) для С99 |
float | 32 | от 1Е–37 до 1Е+37 (с точностью не менее 6 значащих десятичных цифр) |
double | 64 | от 1Е–37 до 1Е+37 (с точностью не менее 10 значащих десятичных цифр) |
long double | 80 | от 1Е–37 до 1Е+37 (с точностью не менее 10 значащих десятичных цифр) |
Для базового типа int возможны следующие записи с модификатором:
Для данных вещественного типа максимальные значения абсолютных величин представлены в табл. 2.2 [2.4].
Вещественные типы данных языка С | ||
---|---|---|
Тип данных | Типичный размер в битах | Диапазон абсолютных величин |
float | 32 | от 3.4Е–38 до 3.4Е+37 |
double | 64 | от 1.7Е–308 до 1.7Е+308 |
long double | 80 | от 3.4Е–4932 до 1.1Е+4932 |
Приведем характеристику данных функций [2.4].
Прототип функции printf() имеет вид:
Спецификаторы формата для функции printf() перечислены в табл. 2.3, взятой из [2.3].
Система типов C++
Терминология
Переменная: символическое имя количества данных, чтобы имя можно было использовать для доступа к данным, на которые он ссылается в области кода, где он определен. В C++ переменная обычно используется для ссылки на экземпляры скалярных типов данных, тогда как экземпляры других типов обычно называются объектами.
Объект. для простоты и согласованности в этой статье используется объект term для ссылки на любой экземпляр класса или структуры, и когда он используется в общем смысле, включает все типы, даже скалярные переменные.
Тип POD (обычные старые данные): Эта неофициальная Категория типов данных в C++ относится к скалярным типам (см. раздел фундаментальные типы) или к классам Pod. Класс POD не содержит статических данных-членов, которые не являются типами POD, а также не содержит пользовательских конструкторов, пользовательских деструкторов или пользовательских операторов присваивания. Кроме того, класс POD не имеет виртуальных функций, базового класса и ни закрытых, ни защищенных нестатических данных-членов. Типы POD часто используются для внешнего обмена данными, например с модулем, написанным на языке С (в котором имеются только типы POD).
Указание типов переменных и функций
C++ — это строго типизированный язык, который также является статически типизированным; Каждый объект имеет тип, и этот тип никогда не изменяется (не следует путать с статическими объектами данных). При объявлении переменной в коде необходимо либо явно указать ее тип, либо использовать auto ключевое слово, чтобы указать компилятору вывести тип из инициализатора. При объявлении функции в коде необходимо указать тип каждого аргумента и его возвращаемое значение или void значение, если функция не возвращает никакого значения. Исключением является использование шаблонов функции, которые допускают аргументы произвольных типов.
После объявления переменной изменить ее тип впоследствии уже невозможно. Однако можно скопировать значения переменной или возвращаемое значение функции в другую переменную другого типа. Такие операции называются преобразованиями типов, которые иногда являются обязательными, но также являются потенциальными источниками потери или неправильности данных.
При объявлении переменной типа POD настоятельно рекомендуется инициализировать ее, т. е. указать начальное значение. Пока переменная не инициализирована, она имеет «мусорное» значение, определяемое значениями битов, которые ранее были установлены в этом месте памяти. Необходимо учитывать эту особенность языка C++, особенно при переходе с другого языка, который обрабатывает инициализацию автоматически. При объявлении переменной типа, не являющегося классом POD, инициализация обрабатывается конструктором.
В следующем примере показано несколько простых объявлений переменных с небольшим описанием для каждого объявления. В примере также показано, как компилятор использует сведения о типе, чтобы разрешить или запретить некоторые последующие операции с переменной.
Базовые (встроенные) типы
Базовые типы распознаются компилятором, в котором предусмотрены встроенные правила, управляющие операциями, выполняемыми с такими типами, а также преобразованием в другие базовые типы. Полный список встроенных типов, а также их размер и числовые ограничения см. в разделе Встроенные типы.
На следующем рисунке показаны относительные размеры встроенных типов в реализации Microsoft C++:
В следующей таблице перечислены наиболее часто используемые фундаментальные типы и их размеры в реализации Microsoft C++:
Другие реализации C++ могут использовать разные размеры для определенных числовых типов. Дополнительные сведения о размерах и отношениях размеров, необходимых стандарту C++, см. в разделе Встроенные типы.
Тип void
Квалификатор типа const
Любой встроенный или пользовательский тип может квалифицироваться ключевым словом const. Кроме того, функции-члены могут быть const полными и даже const перегруженными. Значение const типа не может быть изменено после инициализации.
Строковые типы
Определяемые пользователем типы
Компилятор не имеет встроенных сведений о пользовательском типе. Он узнает о типе при первом обнаружении определения во время процесса компиляции.
типы указателей
Датировано назад к самой ранней версии языка C, C++ позволяет объявить переменную типа указателя с помощью специального декларатора * (звездочка). Тип указателя хранит адрес расположения в памяти, в котором хранится фактическое значение данных. В современных C++ они называются необработанными указателями и доступны в коде с помощью специальных операторов * (звездочки) или -> (тире с символом «больше»). Это называется разыменованием, и какой из используемых объектов зависит от того, выполняется ли разыменование указателя на скаляр или указатель на член в объекте. Работа с типами указателя долгое время была одним из наиболее трудных и непонятных аспектов разработки программ на языках C и C++. В этом разделе приводятся некоторые факты и рекомендации по использованию необработанных указателей, если вы хотите, но в современной версии C++ больше не требуется (или рекомендуется) использовать необработанные указатели для владения объектами, так как при развитии интеллектуального указателя (см. Дополнительные сведения в конце этого раздела). Все еще полезно и безопасно использовать необработанные указатели для отслеживания объектов, но если требуется использовать их для владения объектом, необходимо делать это с осторожностью и после тщательного анализа процедуры создания и уничтожения объектов, которые им принадлежат.
Первое, что необходимо знать, — это то, что при объявлении переменной необработанного указателя выделяется только память, необходимая для хранения адреса расположения памяти, на который будет ссылаться указатель при разыменовывании. Выделение памяти для самого значения данных (также называемое резервным хранилищем) еще не выделено. Другими словами, объявив переменную необработанного указателя, вы создаете переменную адреса памяти, а не фактическую переменную данных. Разыменовывание переменной указателя до проверки того, что она содержит действительный адрес в резервном хранилище, приведет к неопределенному поведению (обычно неустранимой ошибке) программы. В следующем примере демонстрируется подобная ошибка:
Пример разыменовывает тип указателя без выделения памяти для хранения фактических целочисленных данных или без выделенного допустимого адреса памяти. В следующем коде исправлены эти ошибки:
Однако можно легко забыть удалить динамически выделенный объект, особенно в сложном коде, который вызывает ошибку ресурса, называемую утечкой памяти. По этой причине в современном С++ настоятельно не рекомендуется использовать необработанные указатели. Почти всегда лучше обернуть необработанный указатель в Интеллектуальный указатель, который автоматически освобождает память при вызове его деструктора (когда код выходит за пределы области для смарт-указателя); с помощью смарт-указателей вы практически устраняете целый класс ошибок в программах на C++. В следующем примере предположим, что MyClass — это пользовательский тип, который имеет открытый метод DoSomeWork();
Дополнительные сведения о смарт-указателях см. в разделе интеллектуальные указатели.
Дополнительные сведения о преобразовании указателей см. в разделе преобразования типов и типизация.
Дополнительные сведения об указателях в целом см. в разделе указатели.
Типы данных Windows
Дополнительные сведения
Дополнительные сведения о системе типов C++ см. в следующих разделах.
Преобразования типов и безопасность типов
Описание типовых проблем преобразования типов и способов их избежать.