что такое барометрическое нивелирование

Сущность барометрического нивелирования

Барометрическое нивелирование основано на том, что давление воздуха при разных высотах над уровнем моря различно. Чем выше расположена точка, тем меньше в ней давление воздуха. Давление воздуха зависит от высоты столба воздуха; влажности; температуры и от величины силы тяжести. Эту зависимость выражают полной барометрической формулой.

Давление воздушного столба в мм рт. ст. определяют ртутным барометром, анероидом, барографом и. т. д.

В геодезических измерениях используют сокращенную барометрическую формулу:

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

гдеh – разность высот;

α – температурный коэффициент объемного расширения

воздуха, α =0,003665 = что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование;

Р1 и Р2 – давление в мм рт. ст., определяемое в первой и второй точках;

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование– среднее значение температуры в точках 1 и 2.

Вычисление по сокращенной формуле производится при помощи таблиц барометрических ступеней высот. Приведенная выше барометрическая формула преобразовывается в такой вид:

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

где что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование– барометрическая ступень, выбирается из таблицы барометрических ступеней высот по аргументам Рср и tcp;

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование– среднее значение давления;

μ – модуль перехода от натуральных логарифмов к десятичным (μ = 0,4343);

При барометрическом нивелировании вводят ряд поправок за температуру воздуха, изменение силы тяжести, инструментальную и др.

Погрешность барометрического нивелирования зависит от периодических и случайных колебаний воздуха. Для уменьшения влияния этих факторов измерения проводят в безветренную, пасмурную, туманную погоду.

Погрешность определения высот при измерении давления с точностью 0,02 мм рт. ст составляет ± 0,3 м.

ТОПОГРАФИЧЕСКИЕ ПЛАНЫ И КАРТЫ

Результаты угловых, линейных и высотных измерений на земной поверхности математически обрабатываются, а затем данные этой обработки используются при изображении объектов, контуров и рельефа в виде планов и карт.

5.1. Определение размеров участков земной
поверхности, изображаемых на планах и картах

План – это ортогональная проекция участка поверхности земли на горизонтальную плоскость. Иными словами, план представляет собой графический чертеж, на котором изображаются без искажений объекты и контуры или объекты, контуры и рельеф местности.

Здесь возникает вопрос о размерах плоского проектируемого участка. Примем земную поверхность за шар радиусом

R = 6371,11 км (рис. 50).

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелированиеИзмеренное на поверхности земли расстояние АС = s проектируется на плоскость отрезком АВ = d. Найдем разность Δs = d – s: Δs = R·tgα – R·α. Разложим tgα в ряд, и, ограничиваясь двумя первыми членами разложения, получим что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование.
Рис. 50. Влияние кривизны земли на определение расстояний и высот

Так как что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование, тогда что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Если принять s = 10000 м, тогда Δs = 1 см. В относительной мере это составляет 1:1000000, что соответствует наивысшей точности линейных измерений в геодезии. Следовательно, участки размером 20х20 км можно считать плоскими.

Рассмотрим влияние кривизны земли на высоты. На рис. 50 отрезок ВС = Δh указывает на разность высот на поверхности земли и на плоскости.

По теореме Пифагора

После преобразований получим

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование,

а так как Δh очень мало по сравнению с 2R, то можно записать, что

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование.

При d = 0,5 км разность Δh = 2 см, при d = 1,0 км Δh = 8 см, при d = 2,0 км Δh = 31 см, при d = 10 км Δh = 780 см. Этот расчет показывает, что влияние кривизны земли по высоте сказывается при расстоянии в 0,5 км. Следовательно, при передаче высоты на расстояния более 400 м необходимо учитывать кривизну земной поверхности. Масштабы планов 1:5000, 1:2000, 1:1000, 1:500, 1:200, 1:100 и крупнее.

На планах масштаб по всем направлениям не меняется.

Карта – это графическое изображение объектов, контуров и рельефа местности с учетом кривизны земной поверхности.

Карта отличается от плана наличием картографической сетки, т. е изображением меридианов и параллелей, позволяющим определять по карте географические координаты точек на поверхности земли.

Масштаб карт 1:10000, 1:25000, 1:50000, 1:100000, 1:200000, 1:500000, 1:1000000 и мельче. На картах масштаб по различным направлениям неодинаков.

Номенклатура карт и планов

Номенклатура – это система учета отдельных листов карт и планов различных масштабов. Основа номенклатуры – карта масштаба 1:1000000, на которой изображается территория поверхности земли по долготе 6º и по широте 4º.

Земной шар делится меридианами через 6º на колонны, которые нумеруются арабскими цифрами от 1 до 60. Счет колонн ведется от меридиана, противоположного Гринвичскому. Проведенные от экватора на север и на юг параллели через 4º образуют пояса, которые обозначаются прописными буквами латинского алфавита A, B, C… и т. д. Обозначение миллионного листа карты, на котором находится Москва, имеет следующий вид N-37.

Листы карт масштаба 1:1000000 делятся на 4 листа масштаба 1:500000 и обозначаются прописными буквами А, Б, В и Г (например, лист N-37-Б на рис. 51).

Листы карт масштаба 1:1000000 делятся на 36 листов масштаба 1:200000, которые обозначаются римскими цифрами (на рис. 51 лист N-37-XIX).

Листы карт масштаба 1:1000000 делятся на 144 листа масштаба 1:100000 и обозначаются арабскими цифрами (на рис.51 лист N-37-133).

На листе карты масштаба 1:100000 размещаются 4 листа карты масштаба 1:50000 например, лист N-37-133-Б на рис. 51).

На листе карты масштаба 1:50000 размещаются 4 листа карты масштаба 1:25000 (например, лист N-37-133-Б-б на рис. 51).

На листе карты масштаба 1:25000 размещаются 4 листа карты масштаба 1:10000 (например, лист N-37-133-Б-б-3 на рис. 51).

Разграфка планов производится двумя способами.

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Рис. 51. Номенклатура карт и планов

Листу плана в масштабе 1:5000 соответствуют 4 листа в масштабе 1:2000 (см. план 256-Г на рис. 51). Листу плана в масштабе 1:2000 соответствуют 4 листа в масштабе 1:1000 (см. план 256-Г-IV на рис. 51) и 16 листов в масштабе 1:500 (см. план 256-Г-9 на рис. 51).

Условные знаки на планах и картах

Объекты на земной поверхности изображаются в виде условных знаков, которые подразделяются на два вида: масштабные и внемасштабные.

Масштабные (или контурные) условные знаки сохраняют очертания изображаемого объекта, например, пашни, огороды, озера, леса и т. д. На рис. 2 в кв. 6506 контур участка местности с редким лесом и кустарником.

Условные внемасштабные знаки применяются тогда, когда изображаемый в масштабе объект обращается в точку или линию. Например, положение колодца определяется центром кружка, положение отдельно стоящего дерева – вершиной прямого угла у основания знака.

Условные знаки автомобильных и железных дорог занимают промежуточное положение между масштабными и внемасштабными знаками, так как длину дороги можно определить по масштабу, а ширина ее преувеличена и ее значение подписывают на условном знаке.

Условные контурные знаки вычерчиваются в виде точечного пунктира. Кварталы домов, ограждения показываются в виде линий.

На картах применяются условные пояснительные знаки. Например, лиственные или хвойные породы леса. В кв. 6406 (см. рис. 2) показаны лиственные деревья (дуб).

На картах применятся пояснительные подписи. Например, у мостов в числителе простой дроби указывают длину и ширину моста, а в знаменателе – грузоподъемность в тоннах. При изображении лесного массива в числителе дроби показывают среднюю высоту деревьев, в знаменателе – толщину дерева и рядом среднее расстояние между деревьями. В кв. 6406 (см. рис. 2) указывается, что высота деревьев 14 м, толщина на высоте груди 0,29 м и среднее расстояние между деревьями 4 м.

Рельеф местности (горы, холмы, котловины, лощины, хребты и т. д.) изображаются горизонталями. Они показываются светло-коричневым цветом. Горизонтали образуются в результате пересечения поверхности земли воображаемыми горизонтальными плоскостями, отстоящими на одну и ту же величину по вертикали. Эта величина называется высотой сечения рельефа.

Дата добавления: 2015-02-23 ; просмотров: 1958 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

В данной статье рассмотрим понятие, виды нивелирования, где и как они применяются. Слово заимствованно из немецкого (nivelieren) и французского (niveleur) языков.

Значение слова – определять разность высот, к нему подходят синонимы – «сглаживать», «уравнивать».

Что такое нивелирование

Нивелирование – комплекс замеров, применяемых в геодезии. Оно используется, чтобы определить перепад высот между двумя или более точками. Таким образом выявляется превышение.

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Применяя нивелирование и сопоставляя результаты измерений, можно в точности отобразить рельеф на топографических картах, разработать проекты организационно-хозяйственной деятельности.

Прибор, применяемый для измерения разности высот, называется нивелиром. Его устанавливают на подставку и винтами регулируется уровень.

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Подразделяются на высокоточные (для работ I и II классов), точные (III и IV), технические (инженерно-технические исследования).

Виды нивелирования

В настоящий момент применяют семь разновидностей выполнения измерений. Каждый вид зависит от конкретного случая.

Геометрическое нивелирование

Чтобы выполнить такое измерение, нужен горизонтальный луч визирования и отсчетная шкала. Такой луч генерируется при помощи нивелира, а отсчетной шкалой является рейка со шкалой.

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Такой вид самый распространенный и не сложный. Точность данного вида велика и риск в просчетах достигает максимум 1 мм на 1 км расстояния. Такой вид используется при геодезических работах для нивелирования поверхности.

По способу определения планового положения снимаемых очертаний и нивелируемых точек выделяют следующие методики нивелирования поверхности:

по квадратам (при условии гладкой местности);

по параллельным линиям (в лесистой местности);

по магистралям (при выраженном рельефе).

Барометрическое нивелирование

Метод необходим, чтобы измерить превышение перепада атмосферного давления. Измерения проводятся в разных отметках необходимой территории.

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

В данном методе пользуются барометр. Им измеряют давление и, сопоставляя показатели, определяется превышение.

В барометрическом методе нивелирования точность исследований невысокая, так как вид исследований зависит от погодообразования, и погрешность может варьироваться от полуметра до двух.

Данный метод применяется на начальном этапе работ.

Тригонометрическое нивелирование

Используя такой вид, вычисление превышения измеряют путем наклонного угла визирования к горизонту.

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Чтобы измерить вертикальные углы, применяют геодезическое оборудование: теодолит – чтобы определить угол наклона, дальномер – измерить расстояние.

Погрешность – максимум 40 мм на 100 м. Ограниченно применение в горной и холмистой местности.

Гидростатическое нивелирование

Вид измерения, который основывается на методе свойства сообщающихся сосудов.

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Жидкость в емкости устанавливается по одному уровню, а поверхность расположена под прямым углом по направлению к силе тяжести, что дает возможность определить превышение.

Применяется, чтобы получить небольшие измерения. Погрешность сопоставима с геометрическим нивелированием.

Стереофотограмметрическое нивелирование

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Это основной метод, применяемый для топографии и картографии местности.

Механическое нивелирование

Применяется в качестве контроля расположения железнодорожных дорог и прочих линейных конструкций.

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

При помощи особых датчиков, зафиксированных на транспорте, на листе вырисовывается профиль местности.

Радиолокационное нивелирование

Основа метода заключается в получении абсолютных высот с летательных аппаратов, используя специальные высотометры.

Основные способы нивелирования

Выделяют пару способов, они отличаются от положения нивелира в нивелируемых точках:

Нивелирование из середины. Нивелир ставится посередине между заданными точками, в самих точках рейки. Точка А – задняя, В – передняя.

Визирная ось нивелира приводится в горизонтальное положение и поочередно наводится на А, а потом на В, получаются расчеты а и b. Формула превышения между точками: h = a — b;

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Нивелирование вперед. Над т. А устанавливается нивелир таким образом, чтобы визир находился на одной отвесной линии с точкой. Рейка устанавливается на т. В.

Измеряется высота i над точкой А и берется отсчет b по рейке. Формула превышения между точками: h = i — b.

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Выполняя последовательное нивелирование – получается нивелирный ход.

Нивелирование проводится, чтобы изучить рельеф, определить высоту точек в стадии проектировании, применяется при сооружении и эксплуатации инженерных конструкций.

Показатели нивелирования вносят огромный вклад в решении главных научных целей не только в геодезии, но и в других науках о Земле.

Источник

Барометрическое нивелирование

что такое барометрическое нивелирование. Смотреть фото что такое барометрическое нивелирование. Смотреть картинку что такое барометрическое нивелирование. Картинка про что такое барометрическое нивелирование. Фото что такое барометрическое нивелирование

Барометрическое нивелирование или измерение высот — один из методов нивелирования, основанный на установленной Блезом Паскалем в 1647 связи давления воздуха с высотой точки над уровнем моря (Барометрическая формула).

Нивелирование даёт средство наносить на планы ряды возвышений и понижений или профили местностей по определенным направлениям. Если для нивелирования употребляются геодезические инструменты, то оно называется геодезическим, если барометры — то барометрическим. Для измерения высоких гор употребляются особые приёмы и приборы; способ вычисления — тригонометрический, и само измерение называется этим словом. Есть также барометрический способ определения больших высот. Перенесение барометра с одного места на другое, возвышенное над первым на 10 м, сопровождается понижением ртути приблизительно на 1 млн, но дальнейшее поднятие еще на 10 метров производит несколько меньшее понижение ртути, а следующее поднятие — еще того меньшее. Измерение давления атмосферы с высотой усложняется его темпрературой, так как холодный воздух тяжелее теплого. Вдобавок пары воды, всегда содержащиеся в воздухе, количественно изменяются от многих причин, действующих иногда вместе, иногда отдельно, что опять влияет на атмосферное давление. Поэтому зависимость величины понижения ртутного столба в барометре с высотой места, на которое он перенесен, очень сложна, и вычислить возвышение одного места над другим из показаний барометра чрезвычайно трудно, коль скоро эти два места значительно удалены одно от другого. Эта трудность ещё увеличивается, если в одной местности происходят перемены в атмосфере, не достигающие другой местности. В таких случаях приходится принять в расчёт среднюю высоту ртутного столба в каждой из сравниваемых местностей, выведенную из многолетних наблюдений. Для наблюдения высоты места из барометрических наблюдений предложено несколько формул; здесь приводится одна, выведенная Лапласом:

Z = 18336 метров (1+0,002845cos2φ)[1+(t+t1)/500]log(H/h).

В этой формуле буквой Z означено искомое возвышение одной местности, в которой высота барометра есть H миллим. над другой, в которой в то же время высота ртути есть h мил., температура в первой местности есть t°, во второй t°1 — стоградусного термометра; буквою φ означена широта места.

По вставке в эту формулу величин, полученных наблюдениями, и по сделанию всех вычислений получится высота (Z) одной местности над другой в метрах. Есть другая формула, выведенная Бесселем и пополненная Плантамуром; еще одну предложил Бабине. Вообще очень многие ученые старались улучшить способы вычисления высоты места на основании наблюдений Барометрического нивелирования. Все подобные способы и формулы названы гипсометрическими. Они послужили для определения высот очень многих гор, но сравнения найденных так. обр. чисел с определенными точным тригонометрическим путем показали, что гипсометрические формулы приводят к ошибкам, которые невелики только в случае близости сравниваемых пунктов; определить же с некоторой точностью высоту над поверхностью моря некоторой части материка, очень удаленной от берега, по этим формулам нельзя, даже если пользоваться, как было сказано выше, средними высотами барометра, определенными из продолжительных наблюдений. Такие сравнения были, между прочим, сделаны русским академиком Э. Х. Ленцем для Каспийского и Азовского морей. В случае таких больших промежуточных расстояний оказывается, что в разные времена года получаются различные высоты; поэтому теперь есть много противников барометрического нивелирования между точками, весьма отдаленными. С другой стороны, нивелирование небольших высот и на небольших расстояниях приобретает значительное распространение благодаря последним улучшениям в устройстве анероидов (см. это слово). В анероидах, имеющих форму металлической коробки с волнистым или желобчатым верхним дном, из которой вытянут воздух, от изменения атмосферного давления это дно более или менее вдавливается или поднимается; движение дна передается посредством механизма, состоящего из рычагов и колес, стрелке, показывающей на циферблате цифры, соответствующие высоте ртутного столба в барометре. Во многих анероидах движение стрелки вдвое и втрое значительнее движения ртутного столба в барометре, так что при восхождении на такие малые высоты, для которых понижение ртути с трудом может быть замечено, — стрелки анероидов могут передвигаться очень значительно; в этом можно убедиться, переходя из одного этажа дома в другой с ртутным барометром и чувствительным анероидом. Надо только знать, что в продажу поступают анероиды очень различного достоинства. Анероиды Ноде (Naudet) с циферблатом и стрелкой считаются лучшими; более простого устройства хорошие анероиды, напр., Рейтца, снабжены микроскопом для измерения очень малых движений указателя. Во всяком случае анероиды должны быть от времени до времени сверяемы с нормальными барометрами, вдобавок при различных температурах, так как одно нагревание и охлаждение анероида может сообщить стрелке значительное движение, если только в нем нет специальных приспособлений для уничтожения влияния температур. Самое плохое при употреблении анероидов для серьёзных целей — это возможность нечаянного изменения или повреждения его, которое не лишит стрелку движения, но может долгое время оставаться незамеченным и будет причиной многих ошибок в наблюдениях.

Пригодность анероидов для нивелирования доказана опытом, но для той же цели может служить ещё один прибор, ещё большей чувствительности. Происходящие в атмосферном воздухе небольшие колебания, не указываемые обыкновенным барометром, очень заметны на простом приборе, который может быть сделан даже домашним образом. Если налить в стклянку немного какой-нибудь жидкости и потом закупорить пробкой, в которую вставлена стеклянная трубочка, идущая до дна стклянки, то жидкость, наполняющая часть трубочки, будет приходить в движение при всяком изменении давления атмосферы, так как оно сопровождается увеличением или уменьшением объема воздуха стклянки. Но этот объем будет изменяться также и от очень малых изменений температуры, и потому стклянка должна быть окружена дурными проводниками теплоты (гагачьим пухом, водой).

Дмитрий Иванович Менделеев устроил на этом основании настоящий измерительный прибор, который он назвал дифференцианальным барометром, а в применении к нивелированию — высотомером. Этот прибор был испытан и при надлежащем употреблении может быть полезен во многих случаях. Испытания высотомера в окрестностях Гельсингфорса показали, что действительная высота горы 20,44 сажени по измерениям высотомером средним числом на 0,12 сажени больше; расстояние между двумя пунктами, в которых были сделаны измерения по высотомеру, составляло 4 версты. В другом случае высотометр показал 10,28 сажени, когда действительная высота была 10,16 сажени. О барометрическом измерении высот см.: «Lehrbuch der Meteorologie von Dr. Schmid» (1860), «О барометрическом нивелировании и о применении для него высотомера Д. Менделеева» (Спб., 1876). Исследование анероидов — в «Zeitschrift f ür Instrumenten Kunde» (1887, 1888, 1889).

Источник

Барометрическое нивелирование

Из Википедии — свободной энциклопедии

Барометрическое нивелирование или измерение высот — один из методов нивелирования, основанный на установленной Блезом Паскалем в 1647 связи давления воздуха с высотой точки над уровнем моря (барометрическая формула).

Нивелирование даёт средство наносить на планы ряды возвышений и понижений или профили местностей по определенным направлениям. Если для нивелирования употребляются геодезические инструменты, то оно называется геодезическим, если барометры — то барометрическим. Для измерения высоких гор употребляются особые приёмы и приборы; способ вычисления — тригонометрический, и само измерение называется этим словом. Есть также барометрический способ определения больших высот. Перенесение барометра с одного места на другое, возвышенное над первым на 10 м, сопровождается понижением ртутного столба приблизительно на 1 мм, но дальнейшее поднятие ещё на 10 метров производит несколько меньшее понижение ртути, а следующее поднятие — ещё того меньшее. Измерение давления атмосферы с высотой усложняется его температурой, так как холодный воздух тяжелее теплого. Вдобавок пары воды, всегда содержащиеся в воздухе, количественно изменяются от многих причин, действующих иногда вместе, иногда отдельно, что опять влияет на атмосферное давление. Поэтому зависимость величины понижения ртутного столба в барометре с высотой места, на которое он перенесен, очень сложна, и вычислить возвышение одного места над другим из показаний барометра чрезвычайно трудно, коль скоро эти два места значительно удалены одно от другого. Эта трудность ещё увеличивается, если в одной местности происходят перемены в атмосфере, не достигающие другой местности. В таких случаях приходится принять в расчёт среднюю высоту ртутного столба в каждой из сравниваемых местностей, выведенную из многолетних наблюдений. Для наблюдения высоты места из барометрических наблюдений предложено несколько формул; здесь приводится одна, выведенная Лапласом:

Z = 18336 · (1+0,002845cos(2φ))·[1+(t+t1)/500]·lg(H/h).

В этой формуле буквой Z означено искомое возвышение одной местности, в которой высота барометра есть H мм над другой, в которой в то же время высота ртути есть h мм, температура в первой местности есть t°, во второй t°1 — стоградусного термометра; буквою φ означена широта места.

По вставке в эту формулу величин, полученных наблюдениями, и по сделанию всех вычислений получится высота (Z) одной местности над другой в метрах. Есть другая формула, выведенная Бесселем и пополненная Плантамуром; ещё одну предложил Бабине. Вообще очень многие ученые старались улучшить способы вычисления высоты места на основании наблюдений барометрического нивелирования. Все подобные способы и формулы названы гипсометрическими. Они послужили для определения высот очень многих гор, но сравнения найденных так. обр. чисел с определенными точным тригонометрическим путём показали, что гипсометрические формулы приводят к ошибкам, которые невелики только в случае близости сравниваемых пунктов; определить же с некоторой точностью высоту над поверхностью моря некоторой части материка, очень удаленной от берега, по этим формулам нельзя, даже если пользоваться, как было сказано выше, средними высотами барометра, определенными из продолжительных наблюдений. Такие сравнения были, между прочим, сделаны русским академиком Э. Х. Ленцем для Каспийского и Азовского морей. В случае таких больших промежуточных расстояний оказывается, что в разные времена года получаются различные высоты; поэтому теперь есть много противников барометрического нивелирования между точками, весьма отдаленными. С другой стороны, нивелирование небольших высот и на небольших расстояниях приобретает значительное распространение благодаря последним улучшениям в устройстве анероидов. В анероидах, имеющих форму металлической коробки с волнистым или желобчатым верхним дном, из которой вытянут воздух, от изменения атмосферного давления это дно более или менее вдавливается или поднимается; движение дна передается посредством механизма, состоящего из рычагов и колес, стрелке, показывающей на циферблате цифры, соответствующие высоте ртутного столба в барометре. Во многих анероидах движение стрелки вдвое и втрое значительнее движения ртутного столба в барометре, так что при восхождении на такие малые высоты, для которых понижение ртути с трудом может быть замечено, — стрелки анероидов могут передвигаться очень значительно; в этом можно убедиться, переходя из одного этажа дома в другой с ртутным барометром и чувствительным анероидом. Надо только знать, что в продажу поступают анероиды очень различного достоинства. Анероиды Ноде (Naudet) с циферблатом и стрелкой считаются лучшими; более простого устройства хорошие анероиды, напр., Рейтца, снабжены микроскопом для измерения очень малых движений указателя. Во всяком случае анероиды должны быть от времени до времени сверяемы с нормальными барометрами, вдобавок при различных температурах, так как одно нагревание и охлаждение анероида может сообщить стрелке значительное движение, если только в нём нет специальных приспособлений для уничтожения влияния температур. Самое плохое при употреблении анероидов для серьёзных целей — это возможность нечаянного изменения или повреждения его, которое не лишит стрелку движения, но может долгое время оставаться незамеченным и будет причиной многих ошибок в наблюдениях.

Пригодность анероидов для нивелирования доказана опытом, но для той же цели может служить ещё один прибор, ещё большей чувствительности. Происходящие в атмосферном воздухе небольшие колебания, не указываемые обыкновенным барометром, очень заметны на простом приборе, который может быть сделан даже домашним образом. Если налить в стклянку немного какой-нибудь жидкости и потом закупорить пробкой, в которую вставлена стеклянная трубочка, идущая до дна стклянки, то жидкость, наполняющая часть трубочки, будет приходить в движение при всяком изменении давления атмосферы, так как оно сопровождается увеличением или уменьшением объема воздуха стклянки. Но этот объем будет изменяться также и от очень малых изменений температуры, и потому стклянка должна быть окружена дурными проводниками теплоты (гагачьим пухом, водой).

Дмитрий Иванович Менделеев устроил на этом основании настоящий измерительный прибор, который он назвал дифференцианальным барометром, а в применении к нивелированию — высотомером. Этот прибор был испытан и при надлежащем употреблении может быть полезен во многих случаях. Испытания высотомера в окрестностях Гельсингфорса показали, что действительная высота горы 20,44 сажени по измерениям высотомером средним числом на 0,12 сажени больше; расстояние между двумя пунктами, в которых были сделаны измерения по высотомеру, составляло 4 версты. В другом случае высотометр показал 10,28 сажени, когда действительная высота была 10,16 сажени. О барометрическом измерении высот см.: «Lehrbuch der Meteorologie von Dr. Schmid» (1860), «О барометрическом нивелировании и о применении для него высотомера Д. Менделеева» (Спб., 1876). Исследование анероидов — в «Zeitschrift für Instrumenten Kunde» (1887, 1888, 1889).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *