что такое барионное число
Барионное число
В физике элементарных частиц барионное число — это приблизительно сохраняемое квантовое число системы. Оно определяется как:
— количество кварков и
— количество антикварков.
Почему присутствует деление на три? По законам сильного взаимодействия полный цветовой заряд частицы должен быть нулевым («белым»), (см. конфайнмент). Этого можно добиться соединением кварка одного цвета с антикварком соответствующего антицвета, создав мезон с барионным числом 0, либо соединением трёх кварков в барион с барионным числом +1, либо соединением трёх антикварков в антибарион с барионным числом −1. Другая возможность — это экзотический пентакварк, состоящий из 4 кварков и 1 антикварка.
Итак, кварки всегда присутствуют тройками, если считать антикварк за «отрицательный кварк». Исторически барионное число было определено задолго до того, как установилась сегодняшняя кварковая модель — так что вместо изменения определения физики просто разделили давно известное квантовое число на три. Теперь более точно говорить о сохранении кваркового числа.
Частицы, не содержащие кварков или антикварков, имеют барионное число, равное 0. Это такие частицы, как лептоны, фотон, W- и Z-бозоны.
Барионное число сохраняется во всех взаимодействиях Стандартной модели. Некоторые теории предсказывают процессы в которых не сохраняется барионное число. Но такие процессы ни разу не наблюдались
«Сохранение» означает, что сумма барионных чисел всех частиц в начале реакции равна сумме барионных чисел всех частиц в конце реакции.
Нарушение закона сохранения барионного числа может привести к распаду протона, но только если барионное число изменится на единицу.
До сих пор являющаяся лишь гипотезой идея теории великого объединения позволяет превратить барион в пучок лептонов, тем самым нарушив законы сохранения лептонного и барионного чисел. Если бы распад протона был зарегистрирован, он явился бы примером такого процесса.
Барионное число
В физике элементарных частиц барионное число — это приблизительно сохраняемое квантовое число системы. Оно определяется как:
— количество кварков и
— количество антикварков.
Почему присутствует деление на три? По законам сильного взаимодействия полный цветовой заряд частицы должен быть нулевым («белым»), (см. конфайнмент). Этого можно добиться соединением кварка одного цвета с антикварком соответствующего антицвета, создав мезон с барионным числом 0, либо соединением трех кварков в барион с барионным числом +1, либо соединением трех антикварков в антибарион с барионным числом −1. Другая возможность — это экзотический пентакварк, состоящий из 4 кварков и 1 антикварка.
Итак, кварки всегда присутствуют тройками, если считать антикварк за «отрицательный кварк». Исторически барионное число было определено задолго до того, как установилась сегодняшняя кварковая модель — так что вместо изменения определения физики просто разделили давно известное квантовое число на три. Теперь более точно говорить о сохранении кваркового числа.
Частицы, не содержащие кварков или антикварков, имеют барионное число, равное 0. Это такие частицы, как лептоны, фотон, W и Z бозоны.
«Сохранение» означает, что сумма барионных чисел всех частиц в начале реакции равна сумме барионных чисел всех частиц в конце реакции.
Нарушение закона сохранения барионного числа может привести к распаду протона, но только если барионное число изменится на единицу.
До сих пор являющаяся лишь гипотезой идея теории великого объединения позволяет превратить барион в пучок лептонов, тем самым нарушив законы сохранения лептонного и барионного чисел. Если бы распад протона был зарегистрирован, он явился бы примером такого процесса.
См. также
en: Baryon number de:Baryonenzahl fr:Nombre baryonique it:Numero barionico nl:Baryongetal pl:Liczba barionowa zh:重子数
Закон сохранения барионного заряда
В физике элементарных частиц барионное число — это приблизительно сохраняемое квантовое число системы. Оно определяется как:
— количество кварков и
— количество антикварков.
Почему присутствует деление на три? По законам сильного взаимодействия полный цветовой заряд частицы должен быть нулевым («белым»), (см. конфайнмент). Этого можно добиться соединением кварка одного цвета с антикварком соответствующего антицвета, создав мезон с барионным числом 0, либо соединением трех кварков в барион с барионным числом +1, либо соединением трех антикварков в антибарион с барионным числом −1. Другая возможность — это экзотический пентакварк, состоящий из 4 кварков и 1 антикварка.
Итак, кварки всегда присутствуют тройками, если считать антикварк за «отрицательный кварк». Исторически барионное число было определено задолго до того, как установилась сегодняшняя кварковая модель — так что вместо изменения определения физики просто разделили давно известное квантовое число на три. Теперь более точно говорить о сохранении кваркового числа.
Частицы, не содержащие кварков или антикварков, имеют барионное число, равное 0. Это такие частицы, как лептоны, фотон, W и Z бозоны.
Барионное число приблизительно сохраняется во всех взаимодействиях Стандартной модели. Исключение — это хиральная аномалия. Также известно, что электрослабые сфалероны нарушают закон сохранения барионного числа.
«Сохранение» означает, что сумма барионных чисел всех частиц в начале реакции равна сумме барионных чисел всех частиц в конце реакции.
Нарушение закона сохранения барионного числа может привести к распаду протона, но только если барионное число изменится на единицу.
До сих пор являющаяся лишь гипотезой идея теории великого объединения позволяет превратить барион в пучок лептонов, тем самым нарушив законы сохранения лептонного и барионного чисел. Если бы распад протона был зарегистрирован, он явился бы примером такого процесса.
См. также
Полезное
Смотреть что такое «Закон сохранения барионного заряда» в других словарях:
закон сохранения барионного заряда — barioninio krūvio tvermės dėsnis statusas T sritis fizika atitikmenys: angl. law of conservation of baryon number vok. Erhaltungssatz der Baryonenzahl, m rus. закон сохранения барионного заряда, m pranc. loi de conservation de la charge… … Fizikos terminų žodynas
Закон сохранения момента импульса — (закон сохранения углового момента) один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на… … Википедия
Закон сохранения — Законы сохранения фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени. Некоторые из законов… … Википедия
Закон сохранения заряда — Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется. Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа… … Википедия
СОХРАНЕНИЯ ЗАКОНЫ — физич. закономерности, согласно к рым численные значения нек рых физ. величин не изменяются со временем в любых процессах или в определ. классе процессов. Полное описание физ. системы возможно лишь в рамках динамич. законов, к рые детально… … Физическая энциклопедия
СОХРАНЕНИЯ ПРИНЦИПЫ — утверждения, выражающие идею сохранения вещей, свойств или отношений природы и выступающие в качестве принципов науч. теорий. К числу С. п. относятся, напр. известные в физике законы сохранения – энергии, массы, импульса, момента импульса,… … Философская энциклопедия
Сохранения законы — физические закономерности, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определённом классе процессов. Полное описание физической системы возможно лишь в рамках… … Большая советская энциклопедия
сохранения принципы — СОХРАНЕНИЯ ПРИНЦИПЫ особый класс научных принципов, отображающих постоянство фундаментальных свойств или отношений природы. В структуре физических теорий С. п. формулируются как законы сохранения и как принципы инвариантности. В настоящее … Энциклопедия эпистемологии и философии науки
Законы сохранения — Законы сохранения фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени. Философские предпосылки … Википедия
ЯДЕРНЫЕ РЕАКЦИИ — превращения атомных ядер при взаимодействии с др. ядрами, элементарными частицами или квантами. Такое определение разграничивает собственно Я. р. и процессы самопроизвольного превращения ядер при радиоактивном распаде (см. Радиоактивность), хотя… … Химическая энциклопедия
Вселенная вместо ничто
Как Андрей Сахаров отвечал на вопрос о причине существования материи
Красивый вопрос о том, почему вообще все существует, будто бы относится к разряду философских — но это, в определенном смысле, дело формулировок. Физики же вместо того, чтобы вопрошать о том, «почему вообще есть сущее, а не наоборот, ничто», предпочитают использовать словосочетание «барионная асимметрия», за которым стоит заметное преобладание вещества над антивеществом в видимой части Вселенной. Одна из ключевых статей, посвященная этому вопросу, принадлежит Андрею Сахарову, имя которого обычно ассоциируется совсем с другими вещами: правозащитной деятельностью и созданием водородной бомбы. В этом материале мы попробуем объяснить, в чем была суть этой работы и почему ее считают значимой, а какие последствия она имела для космологии и физики элементарных частиц, мы попросили прокомментировать физика Валерия Рубакова.
Андрей Сахаров в 1989 году
RIA Novosti archive, image #25981 / Vladimir Fedorenko / CC-BY-SA 3.0
Второй вопрос — о какой асимметрии мы тут говорим. Барион, как и любая квантовая частица, описывается набором числовых квантовых параметров, которые полностью характеризуют его физические свойства. В данном контексте наиболее важный из них — это так называемый барионный заряд — квантовая характеристика, которая определяется через число кварков и антикварков в системе. Именно знак барионного заряда кварков (плюс) отличает вещество от антивещества (у него знак барионного заряда — минус). Если бы частиц с противоположными знаками заряда во Вселенной было поровну, то вещества было бы ровно столько же, сколько и антивещества. В этом случае они бы проаннигилировали, и Вселенная действительно превратилась бы в ничто. Но почему-то Вселенная развивалась так, что вещества в ней сейчас значительно больше, чем антивещества (подробнее о нем вы можете прочитать в нашем материале «C точностью до наоборот»).
Атомы водорода (на переднем плане) и антиводорода (на заднем плане). Как видно, водород состоит из протона и электрона, а антиводород — из антипротона и позитрона
Если мы проведем над частицей операцию зарядового сопряжения (то есть поменяем знак заряда на противоположный), превратив тем самым вещество в антивещество, и она после этого будет подчиняться тем же законам физики, что и до преобразования, то ее в таком случае называют C-симметричной. Такое свойство характерно для электромагнитного и сильного взаимодействия элементарных частиц. Аналогичные преобразования можно провести не только с зарядом, но и с другими категориями: если физические законы, действующие на систему, продолжат выполняться после зеркальной инверсии пространства, это мы будем называть P-симметрией (или симметрией относительно «четности» системы), а такое же сохранение законов после обращения времени вспять — Т-симметрией.
При этом зеркалить таким образом физическую систему можно и относительно нескольких категорий одновременно: тогда мы будем говорить о CP-, TP- или CPT-симметрии. Выполнение симметрии приводит к инвариантности физической системы относительно выбранных категорий (этот термин нам тоже понадобится позже).
Кроме барионов, нам для разговора о том, почему материя в нашей Вселенной вообще существует, понадобится еще несколько элементарных частиц: лептоны (электрически заряженные легкие частицы с полуцелым спином, которые не участвуют в сильном взаимодействии, — это отрицательно заряженные электроны и менее стабильные мюоны, — а также нейтрино — незаряженные легкие частицы, участвующие в слабом взаимодействии) и их античастицы.
Элементарные частицы и их взаимодействия в рамках Стандартной модели. В черных овалах — частицы, синие кривые — взаимодействия между ними. По углам расположены частицы материи (лептоны и кварки), между ними — переносчики взаимодействия: фотон (электромагнитное), глюон (сильное), W- и Z-бозоны (слабое) и бозон Хиггса
Eric Drexler / Wikimedia commons / CC0
Почему Вселенная
В 1964 году Джеймс Уотсон Кронин и Вал Логсдон Фитч показали, что в мироздании действительно есть «трещинка для сущего», и в некоторых случаях слабого взаимодействия CP-инвариантность может нарушаться (в 1980 году за это открытие им присудили Нобелевскую премию). Поскольку для электромагнитного и сильного взаимодействий CP-инвариантность выполняется всегда, то почему она может не выполняться для слабого, было непонятно. Не до конца понятными были и последствия этого нарушения для космологических теорий и теорий взаимодействия элементарных частиц.
Фейнмановская диаграмма, демонстрирующая превращение антикаон в каон. Кварки в каонах при этом обмениваются двумя W-бозонами. Этот процесс наблюдали Кронин и Фитч
Maksim, NikNaks / Wikimedia commons / CC BY-SA 3.0
Именно работа Сахарова стала первой, где вопрос о причинах возникновения этой асимметрии был поставлен явным образом.
Валерий Рубаков: «Вопрос о происхождении барионной асимметрии — очень фундаментальный. Во Вселенной не так много характеристик и свойств такого класса. Фактически происхождение барионной асимметрии и механизм образования структур во Вселенной (галактик и их скоплений) были в середине 1960-х годов двумя главными вопросами. Сейчас к ним добавилась темная материя и темная энергия — и это, наверно, самый сложный вопрос. У Вселенной вообще не так много фундаментальных характеристик, которые требуют анализа и конкретных объяснений.
Кроме того, это была одна из первых статей, где начала становиться понятной связь физики микромира и космологии. Что, конечно, очень нетривиально: фактически эта идея требует, чтобы были увязаны микроскопические механизмы физики элементарных частиц и макроскопические свойства Вселенной. Это, конечно, в результате оказалось очень плодотворным».
Одна из сложностей при объяснении этого явления — фантастическая устойчивость протонов. По современным экспериментальным данным, время жизни протона в нынешних условиях составляет не меньше, чем 10 33 лет — это хотя и не вечность, но на много порядков больше возраста самой Вселенной.
Стабильность протона как раз и объясняется сохранением барионного заряда (или, что то же самое, барионного числа) во всех наблюдаемых физических процессах. Согласно современным представлениям, это число остается постоянным для всех типов взаимодействий, а чтобы барионная асимметрия возникла — оно должно перестать сохраняться. Какие условия и причины для этого нужны — абсолютно непонятно.
Условия Сахарова
Частицы, из которых сейчас состоят атомные ядра, фантастически стабильны — и значит, асимметрия между веществом и антивеществом не могла медленно развиваться при взрослении Вселенной. То есть она либо заложена в каких-то фундаментальных принципах, по которым Вселенная построена, либо стала результатом какого-то процесса в условиях сильной неустойчивости в «младенчестве» Вселенной, когда энергии были совсем другие.
Сахаров выбрал сочетание этих двух идей и описал сценарий, в котором барионная асимметрия рождается в условиях очень ранней Вселенной из-за нарушения CP-симметрии. Очень высокие температура и плотность частиц принципиальным образом изменили механизм взаимодействия барионов между собой и фактически включили в игру какие-то новые взаимодействия.
Валерий Рубаков: «В статье Сахарова есть две части. Одна – это общие необходимые условия образования барионной асимметрии. Он их очень сжато сформулировал, но они абсолютно правильные. Практически все последующие работы в этом направлении, так или иначе, основывались на этих положениях.
Вторая часть менее актуальна. Это попытки построить конкретные механизмы физики частиц, которые бы приводили к генерации барионной асимметрии. Хотя идеи, которые там есть, тоже, в общем, в той или иной форме эксплуатируются. Например, сейчас немножечко ушли от максимонов, про которые писал Сахаров. Это не значит, что это неправильно. Просто сейчас есть более понятные и, кажется, более обоснованные механизмы. Но поскольку ответ на вопросы, как это всё произошло и как возникла барионная асимметрия, неизвестен, то говорить о том, какие теории более правдоподобны, а какие менее – это вопрос вкуса».
В первой части статьи ученый сформулировал три базовых правила, выполнение которых необходимо, чтобы материи во Вселенной оказалось больше, чем антиматерии. Сегодня их называют условиями Сахарова.
Условие #1. Барионное число в этой Вселенной должно изменяться.
Сахаров предположил, что «вечные» в наше время протоны могли распадаться при расширении горячей Вселенной, которое происходило нестационарно (то есть его динамика со временем менялась). В таких условиях кварки в составе протонов могли превращаться в мюоны — ученый счел, что это происходило по механизму трехбозонного взаимодействия (то есть кроме кварка и мюона в реакции должен участвовать еще один бозон) — соответственно, барионное число во Вселенной менялось.
Схема трехчастичного распада протона на кварки с превращением бозона в мюон из статьи Сахарова. Сегодня этот сценарий считается скорее экзотическим
А. Д. Сахаров / Письма в ЖЭТФ, 1967
Условие #2. C- и CP-инвариантность в этой Вселенной должны нарушаться.
Чтобы возникла барионная асимметрия, необходимо то или иное нарушение инвариантности относительно инверсии заряда элементарных частиц. Про нарушение P-симметрии (относительно четности) для слабого взаимодействия было известно довольно давно, но этот эффект пространственный и решить проблему, связанную с барионным зарядом, не очень помогает. А вот открытое Кронином и Фитчем нарушение CP-инвариантности вводит в игру и заряд. Еще одним подтверждением возможности такого нарушения для Сахарова стала теоретическая работа Сусумо Окубо 1958 года, в которой описывался распад сигма-гиперонов.
Условие #3. Во Вселенной во время генерации барионной асимметрии не должно быть теплового равновесия.
Третье условие Сахарова — отсутствие теплового равновесия на сверхплотной стадии расширения горячей Вселенной (то есть присутствие нестационарных процессов). К нему приводит распад тяжелых частиц, и в результате нестационарность становится причиной движения в сторону асимметрии, а не наоборот, как было бы в условиях стационарности.
Эти условия оказались сформулированы очень точно: затем они подтвердились многочисленными теоретическими работами. И заметно повлияли на дальнейшее развитие как космологических теорий, так и теорий взаимодействия элементарных частиц.
Полвека спустя
В условиях обычной физики — той, которую мы наблюдаем во Вселенной сейчас, процессы с нарушением барионного числа просто невозможны. Оно сохраняется всегда с очень высокой точностью. А условия, которые, согласно теоретическим предсказаниям, могли бы привести к нарушению этого правила, пока реализовать на Земле не удается. Для экспериментальной проверки этих гипотез нужны такие энергии столкновения частиц, такие массы этих частиц и такие температуры, которые намного выше доступных сейчас на современных коллайдерах.
Валерий Рубаков: «Уже существенно позже, в 85-ом году, мы с моими коллегами, Вадимом Кузьминым и Михаилом Шапошниковым, поняли, что при высоких температурах в Стандартной модели прямо происходит нарушение барионного числа совместно с нарушением лептонных чисел. Это открыло возможность построения таких механизмов генерации барионной асимметрии, которые происходят за счет нарушения лептонных чисел и частичной переработки в рамках Стандартной модели этих лептонных чисел в барионное число при высоких температурах. Причем тут речь идет не о безумно высоких температурах, порядка сотни гигаэлектронвольт. Поэтому по-прежнему остается надежда, что или существующие коллайдеры или, может быть, коллайдеры следующего поколения все-таки позволят выяснить, какой же был механизм генерации барионной асимметрии. Сейчас достаточно активно обсуждается возможность обнаружения на коллайдерах (или вообще в ускорительных экспериментах) новых частиц, которые ответственны за генерацию барионной асимметрии.
Ещё тут есть очень интересная ниточка к нейтринным осцилляциям, к нарушению лептонных чисел в нейтринном секторе и взаимопревращению нейтрино одного типа в другой. Эти процессы с нейтринными осцилляциями происходят с нарушением лептонных чисел, а нарушение лептонных чисел (если оно происходило достаточно интенсивно в ранней Вселенной) могло приводить и к генерации лептонной асимметрии. А дальше уже — известен механизм, который перерабатывает лептонную асимметрию в барионную. Не исключено, что первые косвенные результаты, которые свидетельствуют о том, как происходила генерация барионной асимметрии, связаны с обнаружением нейтринных осцилляций. Вот такой вот неожиданный поворот».
Барионный заряд
Смотреть что такое «Барионный заряд» в других словарях:
БАРИОННЫЙ ЗАРЯД (B) — БАРИОННЫЙ ЗАРЯД (барионное число) (B) одна из внутренних характеристик барионов. У всех барионов B = +1, а у их античастиц B = 1 (у остальных элементарных частиц B = 0). Алгебраическая сумма барионных зарядов, входящих в систему частиц,… … Большой Энциклопедический словарь
БАРИОННЫЙ ЗАРЯД — (барионное число, В), одна из внутр. характеристик элем. ч ц, отличная от нуля для барионов и равная нулю для всех остальных ч ц. Б. з. барионов полагают равным единице, а антибарионов минус единице. Б. з. системы ч ц равен разности между числами … Физическая энциклопедия
барионный заряд — барионное число (В), одна из характеристик барионов. У всех барионов В = +1, а у их античастиц В = –1 (у остальных элементарных частиц В = 0). Алгебраическая сумма барионного заряда входящих в систему частиц, сохраняется при всех взаимодействиях … Энциклопедический словарь
барионный заряд — (гр. barys тяжелый) одна из внутренних характеристик барионов; барионный заряд в = + 1 для всех бар ионов и в = 1 для их античастиц (у всех других алементарных частиц в = 0); алгебраическая сумма барионных зарядов, входящих в систему частиц,… … Словарь иностранных слов русского языка
Барионный заряд — барионное целочисленное (+1 или 1) квантовое число, обозначаемое В, одна из многих квантовых характеристик барионов. В реакциях с участием или образованием барионов барионный заряд всегда сохраняется … Начала современного естествознания
барионный заряд — barioninis krūvis statusas T sritis fizika atitikmenys: angl. baryon charge vok. Baryonenladung, f rus. барионный заряд, m pranc. charge baryonique, f … Fizikos terminų žodynas
Барионный заряд — барионное число (символ B), одна из характеристик элементарных частиц, отличная от нуля для барионов (См. Барионы) и равная нулю для всех остальных частиц. Б. з. барионов полагают равным единице; тогда Б. з. антибарионов (См. Антибарионы) … Большая советская энциклопедия
БАРИОННЫЙ ЗАРЯД — (барионное число) (В), одна из характеристик барионов. У всех барио нов В = +1, а у их античастиц В = 1 (у остальных элементарных частиц В = 0). Алгебр. сумма Б.з., входящих в систему частиц, сохраняется при всех взаимодействиях … Естествознание. Энциклопедический словарь
Заряд — Заряд: Заряд в физике Электрический заряд количественная характеристика, показывающая степень возможного участия тела в электромагнитных взаимодействиях. Магнитный заряд Цветной заряд квантовое число в квантовой хромодинамике, приписываемое… … Википедия
СОХРАНЕНИЯ ПРИНЦИПЫ — утверждения, выражающие идею сохранения вещей, свойств или отношений природы и выступающие в качестве принципов науч. теорий. К числу С. п. относятся, напр. известные в физике законы сохранения – энергии, массы, импульса, момента импульса,… … Философская энциклопедия