что такое балун в антенне
Что такое балун в антенне
Обмотки W2 и W3 имеют одинаковое число витков, обычно 6…10 витков.
Обмотка W1 расчитывается под необходимый коэффициент трансформации.
Расчет балуна начинают с определения коэффициента трансформации сопротивления:
Затем рассчитываем количество витков обмотки W1:
В случае применения трансформатора на коаксиальных линиях схема приобретает вид:
С первого взгляда абсолютно ничего не понятно. Попробуем разобраться постепенно.
Теперь видно, что схема приобрела вид рисунка №1. Обмотку W3 здесь
Для антенн с сопротивлением выше 50 Ом L2 будет всегда меньше L1 и в этом
Более детально этот вариант можно посмотреть по ссылке http://cqham.ru/tr.htm
Для антенн типа Yagi входное сопротивление как правило ниже, чем 50 Ом
В качестве магнитопровода можно использовать как ферритовые кольца так и
Для Rant от 50 Ом до 200 Ом. Для Rant от 22 Ом до 50 Ом
Для более мощного варианта можно предложить «бинокль из четырех трубок
Рис. 8
Остается закрыть крышкой на герметике и можно ставить на антенну.
Та же антенна с балуном
Антенна диполь 20 м без балуна
Антенна диполь 20 м с балуном
Антенна диапазона 80 м с балуном.
Мы рассмотрели три конструкции балуна. Не анализируя такой параметр как
Выбираем антенный балун (Balun)
В антенной технике широко применяют элементы, которые в радиолюбительской среде принято называть «балун» (BALUN — от английского «balanced-to-unbalanced transformer»). Они позволяют запитывать антенны с балансным (симметричным) входом коаксиальной линией. Известны два типа таких элементов, которые часто называют «BALUN по напряжению» (voltage BALUN) и «токовый BALUN» (current BALUN).
Распространено мнение, что использование балунов позволяет исключить токи по внешней оплётке коаксиального кабеля. Появление этих токов порождает так называемый «антенно-фидерный эффект». В статье BALUN по напряжению против токового BALUN — победитель только один» (Ian White. Voltage baluns versus current baluns — there’s only one winner. — RadCom, 2009, December, p. 41, 42) есть интересный сравнительный анализ этих двух типов элементов.
Дипольная антенна с симметричным входом и симметричным питанием
На рис. 1 приведена идеальная картинка того, как выглядит дипольная антенна с симметричным входом и симметричным питанием. Цветные линии условно показывают распределение электрического поля вблизи такой антенны. Обратите внимание, фидерная линия идёт вниз строго перпендикулярно полотну антенны, но и в этом случае она попадает в зону действия поля
антенны.
Иными словами, требования симметрии распространяются не только на саму антенну, но и окружающие её предметы. Более реальную ситуацию иллюстрирует рис. 2, где поле идеальной антенны искажено влиянием строений, мачт и иных металлических предметов, а также несимметричным расположением фидерной линии. Заметим, что наклонное полотно антенны (sloper) также искажает идеальную картину распределения поля, поскольку разные его участки находятся на разном удалении от земли.
Асимметрия поля приводит к появлению напряжений и токов в проводниках, окружающих антенну. Она приводит к искажению её диаграммы направленности, что радиолюбитель вряд ли заметит, но результирующая асимметрия в точке питания антенны обуславливает появление в фидерной линии синфазных ВЧ токов. А это порождает множество проблем, которые радиолюбитель уже заметит. Таких, например, как искажение сигнала из-за подвозбуждения передатчика, помехи бытовой радиоэлектронной аппаратуры при передаче и высокий уровень импульсных помех при приёме. В большей или меньшей степени эти проблемы имеют решение. И это решение лежит в подавлении синфазных ВЧ токов в фидерной линии.
Если такие токи присутствуют, фидерная линия начинает излучать при передаче (т.е. становится частью антенны). Так, эти токи проникают в помещение радиостанции, наводятся на всех металлических проводниках, начиная от сетевой проводки, телефонных линий и тому подобное. Более того, все домашние проводки сегодня в значительной степени «заражены» импульсными помехами и соответствующие им токи «в обратном направлении» проникают уже на вход приёмника Синфазные токи в фидерной линии в основном возникают в точке, где фидерная линия соединяется с антенной. И в значительной степени их может устранить «токовый BALUN«.
Точка питания антенны коаксиальной фидерной линией
На рис. 3 показан узел в точке питания антенны по коаксиальной фидерной линии. Высокочастотные токи в самой линии хорошо экранируются из-за скин-эффекта — проблемы возникают на её конце. Токи I1 (по центральному проводнику) и I2 (по внутренней поверхности оплётки) — обычные токи в коаксиальной линии. Они равны по величине и противоположны по направлению, т. е. I1=-I2. Токи 14 и 15 — токи соответственно в левой и правой половинах диполя, причём I4=I1, поскольку это токи в одном проводнике. Точка X — точка соединения внутренней и внешней сторон оплётки коаксиального кабеля с правой половиной диполя. В этой точке I5=I2-I3, где I3 — ток по внешней стороне оплётки коаксиального кабеля. Из этого следует, что токи 14 и 15 не равны и различаются как раз на величину тока 13. Другими словами, если по какой-то причине токи в половинах диполя не равны (это может быть по разным причинам), ток, составляющий их разницу, потечёт по внешней стороне оплётки, т. е. проблемы всегда начинаются в том месте, где фидер подключается к антенне.
В идеальном случае симметрии ток I3 отсутствует, но только в этом случае При малейших следах асимметрии появляется синфазный ток по оплетке кабеля. Более того, подробный анализ показывает, что он практически всегда возникает, даже если и используется «BALUN по напряжению«.
Вариантов исполнения BALUN такого типа существует несколько. Один из них с коэффициентом трансформации по сопротивлению 1:1 приведен на рис. 4.
Балун с коэффициентом трансформации по сопротивлению 1:1
Трансформатор содержит три одинаковые обмотки. При подаче на его вход напряжения U на обмотках II и III, к которым подключены нагрузки (половинки диполя), возникает напряжение U/2 — получается симметричный относительно общего провода («земли») выход. Всё хорошо, но только до того момента, пока сопротивления этих нагрузок равны.
Если антенна не идеально симметричная, нагрузки у обмоток II и III трансформатора будут разные. А этот вариант BALUN по физике своей работы будет стремиться уровнять на них напряжения. Это, в свою очередь, неизбежно приведёт к разным токам в нагрузке (т. е. разным 14 и 15 на рис. 3) и, следовательно, к появлению тока в «земляном» проводнике (внешней стороны оплётки коаксиального кабеля). Иными словами, такой BALUN при несимметричной нагрузке будет стимулировать появление синфазного тока, вместо того чтобы его подавлять. Это, конечно, несколько упрощенное представление, но и строгий анализ в этом случае даёт подобный результат.
Передача высокочастотной энергии через устройство со связью через магнитный поток накладывает свои ограничения (в частности, на выбор материала для магнитопровода). Более того, подобные устройства не любят несогласованных нагрузок. Но главное, что они могут вовсе не улучшить ситуацию с синфазными токами на оплётке кабеля. Эту задачу лучше решает «токовый BALUN». Он к тому же может улучшить и симметрию в точке питания антенны.
Один из вариантов такого BALUN показан на рис. 5.
Балун представляет собой обмотку на тороидальном магнитопроводе из феррита, выполненную из коаксиального кабеля фидера. Такая обмотка не влияет на токи, протекающие внутри коаксиального кабеля, но она эффективно отсекает токи по внешней стороне его оплётки. Это, по существу, дроссель, поэтому в отечественных источниках его часто так и называют. Этот дроссель не может, конечно, устранить все проблемы, связанные с антенным эффектом фидера, но заметно уменьшает вероятность их появления.
Более того, существенно уменьшая синфазную составляющую тока по внешней стороне оплетки, он тем самым выравнивает токи в половинках антенны в точке ее питания, т. е. в какой-то мере восстанавливая симметрию антенны. Иными словами, подключённый в точке питания антенны он действительно выполняет функцию не только просто дросселя, но ещё и функцию BALUN.
Не следует забывать, что такой элемент целесообразно устанавливать и в том месте, где фидер входит на радиостанцию. Никакого симметрирования он в этом случае давать не будет — он работает чисто как дроссель. Дело в том, что прямые наводки с полотна антенны на фидер также могут приводить к появлению токов на его внешней стороне оплётки, которые, естественно, могут вызывать нежелательные эффекты.
Выбираем антенный балун (Balun)
Как правильно подобрать антенный трансформатор
В антенной технике широко применяют элементы, которые в радиолюбительской среде принято называть «балун» (BALUN — от английского «balanced-to-unbalanced transformer»). Они позволяют запитывать антенны с балансным (симметричным) входом коаксиальной линией. Известны два типа таких элементов, которые часто называют «BALUN по напряжению» (voltage BALUN) и «токовый BALUN» (current BALUN).
Распространено мнение, что использование балунов позволяет исключить токи по внешней оплётке коаксиального кабеля. Появление этих токов порождает так называемый «антенно-фидерный эффект». В статье BALUN по напряжению против токового BALUN — победитель только один» (Ian White. Voltage baluns versus current baluns — there’s only one winner. — RadCom, 2009, December, p. 41, 42) есть интересный сравнительный анализ этих двух типов элементов.
Рис. 1. Дипольная антенна с симметричным входом и симметричным питанием
На рис. 1 приведена идеальная картинка того, как выглядит дипольная антенна с симметричным входом и симметричным питанием. Цветные линии условно показывают распределение электрического поля вблизи такой антенны. Обратите внимание, фидерная линия идёт вниз строго перпендикулярно полотну антенны, но и в этом случае она попадает в зону действия поля
антенны.
Иными словами, требования симметрии распространяются не только на саму антенну, но и окружающие её предметы. Более реальную ситуацию иллюстрирует рис. 2, где поле идеальной антенны искажено влиянием строений, мачт и иных металлических предметов, а также несимметричным расположением фидерной линии. Заметим, что наклонное полотно антенны (sloper) также искажает идеальную картину распределения поля, поскольку разные его участки находятся на разном удалении от земли.
Асимметрия поля приводит к появлению напряжений и токов в проводниках, окружающих антенну. Она приводит к искажению её диаграммы направленности, что радиолюбитель вряд ли заметит, но результирующая асимметрия в точке питания антенны обуславливает появление в фидерной линии синфазных ВЧ токов. А это порождает множество проблем, которые радиолюбитель уже заметит. Таких, например, как искажение сигнала из-за подвозбуждения передатчика, помехи бытовой радиоэлектронной аппаратуры при передаче и высокий уровень импульсных помех при приёме. В большей или меньшей степени эти проблемы имеют решение. И это решение лежит в подавлении синфазных ВЧ токов в фидерной линии.
Если такие токи присутствуют, фидерная линия начинает излучать при передаче (т.е. становится частью антенны). Так, эти токи проникают в помещение радиостанции, наводятся на всех металлических проводниках, начиная от сетевой проводки, телефонных линий и тому подобное. Более того, все домашние проводки сегодня в значительной степени «заражены» импульсными помехами и соответствующие им токи «в обратном направлении» проникают уже на вход приёмника Синфазные токи в фидерной линии в основном возникают в точке, где фидерная линия соединяется с антенной. И в значительной степени их может устранить «токовый BALUN».
Рис. 3. Точка питания антенны коаксиальной фидерной линией
На рис. 3 показан узел в точке питания антенны по коаксиальной фидерной линии. Высокочастотные токи в самой линии хорошо экранируются из-за скин-эффекта — проблемы возникают на её конце. Токи I1 (по центральному проводнику) и I2 (по внутренней поверхности оплётки) — обычные токи в коаксиальной линии. Они равны по величине и противоположны по направлению, т. е. I1=-I2. Токи 14 и 15 — токи соответственно в левой и правой половинах диполя, причём I4=I1, поскольку это токи в одном проводнике.
Точка X — точка соединения внутренней и внешней сторон оплётки коаксиального кабеля с правой половиной диполя. В этой точке I5=I2-I3, где I3 — ток по внешней стороне оплётки коаксиального кабеля. Из этого следует, что токи 14 и 15 не равны и различаются как раз на величину тока 13. Другими словами, если по какой-то причине токи в половинах диполя не равны (это может быть по разным причинам), ток, составляющий их разницу, потечёт по внешней стороне оплётки, т. е. проблемы всегда начинаются в том месте, где фидер подключается к антенне.
В идеальном случае симметрии ток I3 отсутствует, но только в этом случае При малейших следах асимметрии появляется синфазный ток по оплетке кабеля. Более того, подробный анализ показывает, что он практически всегда возникает, даже если и используется «BALUN по напряжению».
Вариантов исполнения BALUN такого типа существует несколько. Один из них с коэффициентом трансформации по сопротивлению 1:1 приведен на рис. 4.
Рис. 4. Балун с коэффициентом трансформации по сопротивлению 1:1
Трансформатор содержит три одинаковые обмотки. При подаче на его вход напряжения U на обмотках II и III, к которым подключены нагрузки (половинки диполя), возникает напряжение U/2 — получается симметричный относительно общего провода («земли») выход. Всё хорошо, но только до того момента, пока сопротивления этих нагрузок равны.
Если антенна не идеально симметричная, нагрузки у обмоток II и III трансформатора будут разные. А этот вариант BALUN по физике своей работы будет стремиться уровнять на них напряжения. Это, в свою очередь, неизбежно приведёт к разным токам в нагрузке (т. е. разным 14 и 15 на рис. 3) и, следовательно, к появлению тока в «земляном» проводнике (внешней стороны оплётки коаксиального кабеля). Иными словами, такой BALUN при несимметричной нагрузке будет стимулировать появление синфазного тока, вместо того чтобы его подавлять. Это, конечно, несколько упрощенное представление, но и строгий анализ в этом случае даёт подобный результат.
Передача высокочастотной энергии через устройство со связью через магнитный поток накладывает свои ограничения (в частности, на выбор материала для магнитопровода). Более того, подобные устройства не любят несогласованных нагрузок. Но главное, что они могут вовсе не улучшить ситуацию с синфазными токами на оплётке кабеля. Эту задачу лучше решает «токовый BALUN». Он к тому же может улучшить и симметрию в точке питания антенны.
Один из вариантов такого BALUN’а показан на рис. 5.
Рис. 5. Токовый балун
Балун представляет собой обмотку на тороидальном магнитопроводе из феррита, выполненную из коаксиального кабеля фидера. Такая обмотка не влияет на токи, протекающие внутри коаксиального кабеля, но она эффективно отсекает токи по внешней стороне его оплётки. Это, по существу, дроссель, поэтому в отечественных источниках его часто так и называют. Этот дроссель не может, конечно, устранить все проблемы, связанные с антенным эффектом фидера, но заметно уменьшает вероятность их появления.
Более того, существенно уменьшая синфазную составляющую тока по внешней стороне оплетки, он тем самым выравнивает токи в половинках антенны в точке ее питания, т. е. в какой-то мере восстанавливая симметрию антенны. Иными словами, подключённый в точке питания антенны он действительно выполняет функцию не только просто дросселя, но ещё и функцию BALUN.
Не следует забывать, что такой элемент целесообразно устанавливать и в том месте, где фидер входит на радиостанцию. Никакого симметрирования он в этом случае давать не будет — он работает чисто как дроссель. Дело в том, что прямые наводки с полотна антенны на фидер также могут приводить к появлению токов на его внешней стороне оплётки, которые, естественно, могут вызывать нежелательные эффекты.
Что такое балун в антенне
Некоторые аспекты проблемы “балуна”
Адаптированная версия статьи из журнала QST, март, 1983. В дальнейшем опубликована, судя по форме нумерации разделов, в одном из ежегодных радиолюбительских справочниках (ARRL или RSGB).
Раздел 21.1. Введение.
Поскольку некоторые определённые закономерности соединения коаксиальной фидерной линии с симметричной антенной до сего времени не соблюдаются, то до сих пор и сохраняется недопонимание относительно функции “балуна”. Многие промышленные “балуны” являются по сути дела трансформаторами импеданса и определяют тенденцию нашего лёгкого отношения к ним, не более, чем к согласователям, хотя первой основной функцией их является обеспечение правильных путей протекания токов в несимметричной и, связанной с ней, симметричной сбалансированной конфигурации.
В этой главе также описывается простой и недорогой способ нагрузки внешней поверхности фидерной коаксиальной линии ферритовыми изделиями, которые образуют хорошо сбалансированный широкополосный дроссельный “балун”. Поскольку эта конструкция исключает применение согласующего трансформатора, как такового (с присущими ему ошибками в трансформации импеданса), достигаемая точность измерения импеданса антенны и КСВ значительно повышается. Дополнительно, с этим дроссельным “балуном” могут применяться другие согласующие устройства, поскольку вносимая им расстройка незначительна..
Раздел 21.2. Точность трансформации.
Тем более, коэффициент трансформации импеданса таких “балунов” изменится ещё в больших пределах, если используется с антенной с неактивным входным сопротивлением, когда она используется в стороне от её резонансной частоты. Это изменение трансформации, связанное с применением “балунов” трансформаторного типа обычно не создаёт серьёзных проблем в эксплуатации. Тем не менее, снятая зависимость КСВ от частоты с трансформаторным и дроссельным (не дающим ошибок в трансформации импеданса) “балунами” сильно разнятся.
Так при использовании прецизионного моста для измерения импеданса (R + jX), полученные данные будут ошибочными и с “балуном” трансформаторного типа и совсем без “балуна”.
Раздел 21.3. Изменяется ли КСВ в зависимости от длины фидерной линии?
Мы знаем, что входной импеданс фидерной линии зависит от её длины, когда нагрузка (антенна) не согласована с этой линией.
Чтобы понять функцию “балуна”, важно ознакомиться с путями прохождения тока в точках питания диполя. Эти пути показаны на Fig. 23-1.
Из-за своей симметричности в точках подключения фидера, диполь имеет одинаковые по амплитуде, но противоположные по знаку напряжения, этим самым не давая протекающим приложенным токам выходить на внешнюю поверхность фидерной линии. [ 81 ].
Значение тока I3 зависит от импеданса относительно “земли”, обеспечиваемого внешней поверхностью коаксиальной оплётки. Если действующая длина пути к РЧ “земле” есть число нечётное, помноженное на четверть длины волны, то импеданс относительно “земли” будет высоким и током I3 можно пренебречь. В этом случае, I1 и I4, примерно, равны. С другой стороны, если путь токов к РЧ “земле” кратен полуволне, импеданс относительно “земли” будет низким и ток I3 будет значительным. Это влияет на симметрию токов в полудиполях и приводит к излучению фидерной линией. Во многих случаях, этот путь к РЧ “земле” включает в себя сетевой шнур трансивера, домашнюю электропроводку и заканчивается “нулевым” проводом электрической сети! Итак, амплитуда тока I3 изменяется с изменением длины фидерной линии из-за изменений импеданса между полудиполем 2 и “землёй”. Помните, что токи в питающей линии I1 и I2 не могут создавать её излучения и не только потому, что имеют одинаковый уровень и противоположные фазы, но и потому, что их поля экранируются экранной оболочкой коаксиального кабеля. Тем не менее, ток I3, действительно, приводит к излучению и внешняя поверхность оплётки кабеля становится полудиполем 3, который соединён впараллель с полудиполем 2..
Чтобы выделить это эквивалентное соединение излучателей, я упростил схему, как показано на Fig. 21-2.
Коль скоро токи I1 и I2 не взаимодействуют с другими токами, мы можем гипотетически подключить РЧ генератор непосредственно к входным зажимам антенны (диполя). Поскольку необходимость в кабеле для подвода энергии от генератора к антенне отпала, то внешняя поверхность оплётки кабеля может быть заменена проводником, включенным между полудиполем 2 и РЧ “землёй”. Мы не изменили схему электрически, поскольку ток I3 также течёт к “земле”, но, теперь, по отдельному проводнику.
Мы знаем, что, в зависимости от высоты подвеса, импеданс диполя при резонансе обычно составляет от 50 до 75 Ом и чисто активен. На частотах выше резонансной сопротивление значительно возрастает: появляется последовательная индуктивная составляющая, на частотах ниже резонансной появляется ёмкостная составляющая. Импедансом каждого полудиполя является половина импеданса диполя в целом. Поскольку дальний конец полудиполя 3 заземлён, поведение его импеданса соответствует таковому у короткозамкнутой линии передачи с точкой замыкания в месте заземления. Поэтому, когда длина полудиполя 3 равна нечётному числу четвертей длины волны, его импеданс имеет максимум как в параллельном колебательном контуре со значением 2000…3000 Ом. Это высокое сопротивление, включенное впараллель к полудиполю 2, практически, не влияет на общий импеданс диполя. Если же действующая электрическая длина полудиполя 3 отличается от четверти длины волны (также: нечётных длин, кратных четверти длины волны), то при изменении его физической длины или частоты генератора входное сопротивление полудиполя 3 падает и появляется реактивность, включенная последовательно с активным сопротивлением. Эта реактивность носит индуктивный характер, когда длина уменьшается и ёмкостный характер,- когда длина полудиполя увеличивается. Если длина полудиполя 3 кратна полуволне, сопротивление будет минимальным, как в последовательном резонансном контуре (но не нулевым из-за излучения полудиполем 3 и потерь в “земле”).
Итак, когда длина полудиполя 3 существенно отличается от нечётного количества четвертей длин волн,общие активные и реактивные компоненты параллельно соединённых полудиполей 2 и 3 отличаются от таковых полудиполя 1. Соответственно и импеданс полудиполя будет другим, отличным от такового, в случае отсутствия полудиполя 3.
Возвращаясь к Fig. 21-1, мы теперь можем видеть, что без “балуна“ изменение длины питающей линии также изменяет и длину антенны (изменяется длина полудиполя 3), которая, в свою очередь, влияет на импеданс на входе фидерной линии. Поэтому и КСВ, измеренный на входе фидерной линии, изменяется с изменением длины линии, когда отсутствует, исключающий ток I3, “балун”. Это явление объясняет недоумение на лице радиолюбителя, который не использует “балун” и наивно полагает, что может подстроить свой диполь подбором длины фидера, чтобы сохранить отличный КСВ.
Очевидно, что при связи несимметричной питающей линии с симметричной нагрузкой, какой и является диполь, первейшей функцией “балуна” является блокировка внешнего пути тока между внутренней и внешней поверхностями экранирующей оплётки коаксиального кабеля. В схеме с “балуном” ток I2 в конце не разделяется, чтобы сформировать и ток I3, а полностью течёт только в полудиполь 2. Итак, когда ток I3 равен нулю, то I4 = I1 и токи текущие в полудиполях равны, а, значит сбалансированы, симметричны.
После представления вышеизложенного, позвольте сделать ударение на том, что “балун” в точке питания антенны не защитит оплётку кабеля от протекания тока по её внешней стороне, если коаксиальный кабель ассиметрично связан с антенной. Хотя я отношу вышеизложенную концепцию к Joe Reisert’у, W1JR, касательно его статьи [ 82 ]. Он не коснулся источника внешнего тока [ 3 ]. Следовательно, его Fig. 2 и, посвящённый проблеме параграф не проливают свет на функциональное назначение “балуна”. В противовес его комментарию к Fig. 2, когда антенные токи в фидерной линии вызваны несимметричной связью с антенной, “балун” не устраняет эти токи, но будет только менять их фазу и амплитуду.
Раздел 21. 4. Эффект от неприменения “балуна”.
Раздел 21. 5. Дроссельный “балун”.
В частотном диапазоне 14…30 МГц необходимо намотать несколько витков диаметром 6…8 дюймов (15…20 см), чтобы почти полностью устранить ток I3 и исключить излучение фидерной линии. К сожалению, эту форму дросселя (с воздушной намоткой) нельзя осуществить практически на частотах ниже 14 МГц, так как, для получения достаточной индуктивности для подавления тока I3 придётся потратить очень много кабеля (что приведёт ещё и к дополнительному затуханию полезного сигнала).
Следует уделить внимание размещению “дроссельного” “балуна” у антенн, смонтированных на мачтах: дроссельная катушка должна быть размещена непосредственно на зажимах активного элемента. Если катушка будет размещена на некотором расстоянии, то это приведёт к связи части фидера (между антенными зажимами и катушкой) с мачтой или бумом, которые, в свою очередь, будут связаны с одним из плечей активного вибратора. Это приводит к рассимметрированию, сводя на нет эффект от применения “балуна”: разбалансируют токи в активном вибраторе, перекашивают диаграмму направленности и приводят к излучению мачтой.
Частотный диапазон “дроссельного” “балуна” может быть расширен до менее, чем 2,0 МГц путём применения кольцевого сердечника с высокой проницаемостью вместо воздушной намотки. При большой проницаемости сердечника индуктивность дросселя резко возрастает, тем самым оставляя высокое реактивное сопротивление, необходимое для минимизации тока I3 на низких частотах. Очень важно, что при больших мощностях в “дроссельном” “ балуне” не наступает насыщения сердечника, что является серьёзной проблемой в “балунах” “трансформаторного” типа, поскольку возбуждение сердечника очень мало: только током I3, а не большим током, которым питается антенна. По моему совету Reisert выполнил у себя “дроссельный” “балун” с торроидальным ферритовым сердечником Q1 (с проницаемостью 125…400), намотав 9 витков коаксиального кабеля RG-141 для диапазона 14…30 МГц [ 82 ]. Несмотря на то, что его (другой) 12 витковый “балун” хорошо работал на 14 МГц и выше, однако его работа на частоте 4 МГц уже оставляет желать лучшего. Проблема заключалась в направлении расположения обмотки. Трудно пропустить значительное число витков коаксиального кабеля через кольцо, которое ненамного увеличивает общую индуктивность, чтобы блокировать прохождение тока I3.
Раздел 21. 6. W2DU “балун” с ферритовыми кольцами (трубками).
Я получил потрясающие результаты, изготовив “дроссельный” “балун” путём нанизывания ферритовых колец (“трубок”) с ещё большей проницаемостью на коаксиальный кабель питающей линии [ 84 ].
На Fig. 21-3 показаны измеренные значения сопротивления R, реактивного сопротивления X и импеданса Z от частоты на внешней поверхности оплётки в “дроссельном” “балуне” для обоих типов (25 и 50) колец.
Раздел 21. 7. Анализ токовых “балунов” и “балунов” напряжения.
Roy Lewallen, W7EL разработал эффективный анализ и провёл проверку на симметрию в различных схемных решениях, как с использованием “балуна” “дроссельного” типа, так и “трансформаторного” “балуна” [ 118 ]. Его анализ показывает, что “дроссельные” “балуны” являются токовыми, а 4 : 1 с бифиллярной и 1 : 1 с трифиллярной намоткой “трансформаторные” являются “балунами” напряжения. Все “балуны”, с которыми мне приходилось встречаться, исключая “балун” W2DU с ферритовыми кольцами (трубками), который является токовым, все “балуны” 1 : 1, доступные на коммерческом рынке, имеющие трансформатор с трифиллярной намоткой, являются, по сути дела, “балунами напряжения”. Lewallen установил аналитически, что токовые “балуны” обеспечивают равные токи в обеих половинках диполя, независимо от импеданса другой половины. С другой стороны “балуны” напряжения обеспечивают лишь равные напряжения на обеих половинах диполя и, таким образом, не обеспечивают равных токов в каждом полудиполе, если импедансы двух половин не равны. Его опыты показывают, что токовые “балуны” дроссельного типа обеспечивают лучший баланс токов в диполе и наименьшее протекание тока в линии передачи. Труд Lewallen’а действительно открывает глаза на разработку и использование “балунов”. Исследования проведённые Dr. John (Jack) Belrose, VE2CV, со всей очевидностью подтверждают выводы Lewallen’ а, которые я описываю в разделе 21.10. В дополнение к работе Lewallen’ а, Sabin также провёл детальный анализ, касающийся действий электрического и магнитного полей при работе с 1 : 1 токовым “балуном” вместе с экспериментальной наглядностью, которая подтверждает правильность его выводов.
Раздел 21. 8. Проверка симметричности выходных токов в токовом “балуне”.
Раздел 21.9. “Балуны” с антенными тюнерами.
Для получения симметричного выхода для подключения открытой или лестничной линии питания, обычно, разработчиками антенных тюнеров принято ставить “балуны” на выходе тюнера..Во всех тюнерах, с которыми я знаком, использовались “балуны” трансформаторного типа, 4:1 “балуны” напряжения намотаны на ферритовых сердечниках, обычно, торроидальных.. К сожалению выходная цепь не является идеальным местом для установки “балуна”. Почему? Я, вкратце, объясню. И, далее, “балун” напряжения сильно проигрывает токовому “балуну” в получении симметричных токов в фидерной линии. В разделе 21. 10 объясняется, что если Вы используете симметричный фидер, идеальным местом для расположения “балуна” является вход антенного тюнера, а “балун” следует применять токовый “дроссельного” типа, например, “балун” W2BU.
Давайте сначала исследуем некоторые проблемы, возникающие, когда Вы используете “балун” трансформаторного типа, выполненный на ферритовом кольце и установленный на выходе антенного тюнера. Когда “балун” трансформаторного типа выполнен на ферритовом кольце, то этот сердечник должен быть рассчитан на полный магнитный поток, вызываемый током нагрузки. Высокий конечная плотность магнитного потока может вызвать насыщение сердечника. Когда сердечник насыщается, форма РЧ сигнала на выходе сильно искажается, появляются новые нежелательные гармонические сигналы. Бестрансформаторный “дроссельный” “балун”, выполненный как катушка из коаксиального кабеля или из куска кабеля с нанизанными на его ферритовыми кольцами, не имеет сердечников, а, значит, нечему и насыщаться.. И дополнительно, внешние кольца не предназначены для магнитного потока, развиваемого током нагрузки. Кольца рассчитаны только на магнитный поток, развиваемый лишь слабым током, текущим через высокое сопротивление, которое обеспечивают ферритовые кольца на внешней поверхности внешнего проводника коаксиального кабеля (его оплётки), а поэтому такой “балун” и не генерирует гармоники.
Другой проблемой, возникающей при применении “балунов” напряжения трансформаторного типа является распределённая ёмкость между витками его обмотки, которая влияет на баланс токов в цепях симметричного выхода, питающего симметричную фидерную линию. Входной импеданс симметричной фидерной линии может изменяться от низкого до очень высокого и, обычно, имеет реактивную составляющую. Чем выше входной импеданс антенны и чем выше рабочая частота, тем больше эффект разбаланса, вносимый распределённой паразитной междувитковой ёмкостью. С другой стороны выходной разбаланс токов при применении “балуна” с нанизанными ферритовыми кольцами ничтожно мал и может не учитываться. Другой нежелательной чертой “балуна” 4 : 1, выполненного на ферритовом кольце и расположенного на выходе антенного тюнера, может быть возможность его повреждения, которое может случиться при перегрузке “балуна” при работе с полной выходной мощностью в линию с высоким КСВ, который выражается в высоком входном импедансе, содержащем большую реактивность. Далее, нежелаемой характерной чертой 4 : 1 “балуна” являются большие вносимые потери. Типичный уровень потерь, при применении этого типа “балуна”, находится в пределах 0, 5 дБ на частоте 2 МГц и повышается до 2 дБ на частоте 30 МГц. Для сравнения, потери в “балуне” W2DU составляют 0,1…0,2 дБ по всему диапазону применяемых частот, потому что единственной потерей является затухание в куске коаксиальной линии длиной 10,5 дюйма.
Раздел 21.10. Расположение “балуна” на входе антенного тюнера.
Позвольте мне добавить несколько слов о работе John (Jack) Belrose, VE2CV [ 132 ]. Jack является техническим консультантом (советником) ARRL и хорошо известен в радиолюбительских кругах своими экспериментами в области антенной техники. Он некоторое время занимал пост директора лаборатории радиосвязи Департамента Коммуникаций правительства Канады. Jack проводил эксперименты в плане новых подходов к расширению полосы пропускания дипольных антенн и опубликовал результаты своей работы в QST [ 134 ]. Его антенна ассиметрична в отношении к импедансу, рассматриваемому относительно каждого провода симметричной фидерной линии. В конце концов, он открыл, что токи в каждом проводе фидерной линии сильно разбалансировались при использовании 4 : 1 “балуна” напряжения при питании симметричного антенного тюнера. Затем он заменил этот “балун” “балуном” W2DU, изготовленным в заводских условиях и повторил измерения. К его величайшему удивлению, с “балуном” W2DU, токи в фидерной линии были почти идеально симметричны. Фидерная линия у Jack’ а представляла собой две параллельных коаксиальных линии, внешние проводники которых были соединены вместе и заземлены на тюнере, а центральные проводники использовались как симметричная питающая линия (т.е. имела место быть экранированная симметричная питающая линия).
Измерения Jack’ а выявили также, что когда он использовал “балун” напряжения, ток на внешних проводниках был большим и изменялся в широких пределах в диапазоне 2…30 МГц, также сигнализируя о плохой симметрии. Напротив, с токовым “балуном” W2DU, ток на внешних проводниках был очень маленьким и практически неизменным во всём диапазоне частот, отмечая хорошую симметрию. Эти результаты измерений Jack’ а являются для меня впечатляющими, поскольку являются и подтверждением моих собственных выводов, сделанных в результате измерений, которые подтверждают, что токовый “балун” W2DU решает многие проблемы, связанные с применением “балунов” трансформаторного типа, которые я описал выше.
С тех пор как вышло первое издание этой книги, Roy Lewallen сделал сравнительный анализ, касающийся работы “балунов”, включенных до и после антенных тюнеров. В частной переписке он отметил, что имеется лишь незначительная разница в работе “балуна” (видимо: W2DU) в том и другом положении.
QRP 1 : 1 токовый “балун” для использования в походных условиях. ( by Tom Hammond, NØSS )
Затем я одел их поверх отрезка коаксиального кабеля RG-174 длиной в 15 дюймов и закрепил от перемещения последовательно семь групп колец с помощью изоленты, оставив промежутки между ними свободными, для того, чтобы можно было, при необходимости, сворачивать кабель без боязни повредить кольца.
Теперь я без особых проблем могу свернуть кабель в катушку диаметром до 3 дюймов. Ознакомтесь с прилагаемыми фотографиями “балуна” и применённых ферритовых колец. Можно применить различные типы ферритовых колец. Я использовал FB-73-2401, как наиболее подходящие, фирмы Amidon Associates: (http://www.amidoncorp.com/blprice.htm).
Кольца этого типа могут быть также одеты на кабель RG-58/U (300 Вт) и RG-141/RG-142 Teflon ® (1,5 кВт) для изготовления 1:1 мощных токовых “балунов”.