что такое атом водорода
Атом водорода
Атом водорода имеет специальное значение в квантовой механике и релятивистской квантовой механике, поскольку для него проблема двух тел имеет точное или приближенное аналитическое решение. Эти решения применимы для разных изотопов водорода, с соответствующей коррекцией.
В квантовой механике атом водорода описывается двухчастичной матрицей плотности или двухчастичной волновой функцией. Также упрощённо рассматривается как электрон в электростатическом поле бесконечно тяжёлого атомного ядра, не участвующего в движении (или просто в кулоновском электростатическом потенциале вида 1/r). В этом случае атом водорода описывается редуцированной одночастичной матрицей плотности или волновой функцией.
В 1913 году Нильс Бор предложил модель атома водорода, имеющую множество предположений и упрощений, и вывел из неё спектр излучения водорода. Предположения модели не были полностью правильны, но тем не менее приводили к верным значениям энергетических уровней атома.
Результаты расчётов Бора были подтверждены в 1925—1926 годах строгим квантово-механическим анализом, основанном на уравнении Шрёдингера. Решение уравнения Шрёдингера для электрона в электростатическом поле атомного ядра выводится в аналитической форме. Оно описывает не только уровни энергии электрона и спектр излучения, но и форму атомных орбиталей.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Эта статья — об энергетическом спектре квантовой системы. О распределении частиц по энергиям в излучении см. Спектр, Спектр излучения. Об энергетическом спектре сигнала см. Спектральная плотность.Энергетический спектр — набор возможных энергетических уровней квантовой системы.
Атом водорода
Из Википедии — свободной энциклопедии
А́том водоро́да — физико-химическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра как правило входит протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон образует электронную оболочку, наибольшая вероятность обнаружения электрона в единичном объеме наблюдается для центра атома. Интегрирование по сферическому слою показывает, что наибольшая вероятность обнаружения электрона в единичном слое соответствует среднему радиусу равному боровскому радиусу a 0 = 0,529 <\displaystyle a_<0>=0<,>529> ангстрема.
Атом водорода имеет специальное значение в квантовой механике и релятивистской квантовой механике, поскольку для него проблема двух тел имеет точное или приближенное аналитическое решение. Эти решения применимы для разных изотопов водорода, с соответствующей коррекцией.
В квантовой механике атом водорода описывается двухчастичной матрицей плотности или двухчастичной волновой функцией. Также упрощённо рассматривается как электрон в электростатическом поле бесконечно тяжёлого атомного ядра, не участвующего в движении (или просто в кулоновском электростатическом потенциале вида 1/ r ). В этом случае атом водорода описывается редуцированной одночастичной матрицей плотности или волновой функцией.
В 1913 году Нильс Бор предложил модель атома водорода, имеющую множество предположений и упрощений, и вывел из неё спектр излучения водорода. Предположения модели не были полностью правильны, но тем не менее приводили к верным значениям энергетических уровней атома.
Результаты расчётов Бора были подтверждены в 1925—1926 годах строгим квантово-механическим анализом, основанном на уравнении Шрёдингера. Решение уравнения Шрёдингера для электрона в электростатическом поле атомного ядра выводится в аналитической форме. Оно описывает не только уровни энергии электрона и спектр излучения, но и форму атомных орбиталей.
Водород, свойства атома, химические и физические свойства
Водород, свойства атома, химические и физические свойства.
Водород — первый элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 1. Расположен в 1-й группе, первом периоде периодической системы.
Атом и молекула водорода. Формула водорода. Строение атома водорода:
Водород (лат. hydrogenium, от др.-греч. ὕδωρ – «вода» и γεννάω – «рождаю», т.е. «рождающий воду») – первый элемент периодической системы химических элементов Д. И. Менделеева с обозначением H и атомным номером 1. Расположен в 1-й группе, первом периоде периодической системы.
Водород обозначается символом Н.
Как простое вещество водород при нормальных условиях представляет собой двухатомный газ без цвета, вкуса и запаха.
Молекула водорода двухатомна.
Химическая формула водорода Н2.
Строение атома водорода – вокруг ядра, состоящего из одного протона, вращается по единственной s-орбитали один электрон. Гелий относится к элементам s-семейства.
Радиус атома водорода (вычисленный) составляет 53 пм.
Атомная масса атома водорода составляет 1,00784-1,00811 а. е. м.
При высокой температуре молекула водорода Н2 диссоциирует на атомарный водород. При 2000 К на атомарный водород диссоциирует 0,081% молекулярного водорода, при 3000 К – 7,85%, при 5000 К – 95,5%. Переход в атомарное состояние вызывается также электрическим разрядом или под действием излучения с длиной волны менее 85 нм. Распад на атомы требует затраты энергии 104,2 ккал/моль при 25 о С. Под давлением 0,2 мм.рт.ст. атомарный водород может существовать около 1 секунды.
Атомарный водород значительно химически активнее молекулярного.
Изотопы и модификации водорода. Протий, дейтерий, тритий. Ортоводород, параводород:
Молекулярный водород существует в двух спиновых формах (модификациях): ортоводород и параводород. Модификации немного различаются по физическим свойствам, оптическим спектрам, также по характеристикам рассеивания нейтронов. В молекуле ортоводорода o-H2 (температура плавления −259,10 °C, температура кипения −252,56 °C) спины ядер параллельны, а у параводорода p-H2 (температура плавления −259,32 °C, температура кипения −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.
При комнатной температуре водород представляет собой равновесную смесь орто-Н2 (75%) и пара-Н2 (25%) форм. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода, так как энергия пара-молекулы немного ниже энергии орто-молекулы. При 80 К соотношение модификаций приблизительно 1:1.
Разделить две формы водорода возможно путем адсорбции на активном угле при температуре жидкого азота. При этом активный уголь катализирует превращение ортоводорода в параводород. Десорбированный с угля параводород при комнатной температуре превращается в ортоводород до образования равновесной смеси (75:25), однако это превращение без катализатора происходит медленно, что дает возможность изучить свойства отдельных аллотропных форм.
Водород имеет три природных изотопа: 1 H – протий, 2 H – дейтерий и 3 H – тритий (радиоактивен).
Ядро самого распространённого изотопа – протия ( 1 H) – состоит из одного только протона и не содержит нейтронов.
Ядро дейтерия ( 2 H) состоит из одного протона и одного нейтрона.
Ядро трития ( 3 H) состоит из одного протона и двух нейтронов.
Эти изотопы имеют собственные химические символы: протий – H, дейтерий – D, тритий – T.
Протий и дейтерий стабильны. Содержание этих изотопов в природном водороде составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 % соответственно. Оно может незначительно меняться в зависимости от источника и способа получения водорода.
Природный молекулярный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание в нём молекул из чистого дейтерия D2 ещё меньше, отношение концентраций HD и D2 составляет примерно 6400:1.
Физические свойства изотопов водорода (плотность, температура плавления, температура кипения, критическая температура, критическое давление и пр.) отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.
Искусственно получены также другие – тяжёлые радиоактивные изотопы водорода с массовыми числами 4-7 и периодами полураспада 10 −21 −10 −23 с:
– 4 H, состоящий из одного протона и трех нейтронов,
– 5 H, состоящий из одного протона и четырех нейтронов,
– 6 H, состоящий из одного протона и пяти нейтронов,
– 7 H, состоящий из одного протона и шести нейтронов.
Молекулы водорода могут быть образованы как чистыми изотопами H2, D2, T2, так и смешанным составом: HD, HT, DT.
Молекулы чистых протия, дейтерия и трития могут существовать в двух аллотропных модификациях (отличающихся взаимной ориентацией спинов ядер) – орто- и параводород: o-D2, p-D2, o-T2, p-T2. Молекулы водорода с другим изотопным составом (HD, HT, DT) не имеют орто- и парамодификаций.
Свойства водорода (таблица): температура, плотность, давление и пр.:
100 | Общие сведения | |
101 | Название | Водород |
102 | Прежнее название | |
103 | Латинское название | Hydrogenium |
104 | Английское название | Hydrogen |
105 | Символ | Н |
106 | Атомный номер (номер в таблице) | 1 |
107 | Тип | Неметалл |
108 | Группа | |
109 | Открыт | Генри Кавендиш, Великобритания, 1766 г. |
110 | Год открытия | 1766 г. |
111 | Внешний вид и пр. | Газ без цвета, запаха и вкуса |
112 | Происхождение | Природный материал |
113 | Модификации | o-H2 – ортоводород, p-H2 – параводород |
114 | Аллотропные модификации | |
115 | Температура и иные условия перехода аллотропных модификаций друг в друга | |
116 | Конденсат Бозе-Эйнштейна | |
117 | Двумерные материалы | |
118 | Содержание в атмосфере и воздухе (по массе) | 0,00008 % |
119 | Содержание в земной коре (по массе) | 0,15 % |
120 | Содержание в морях и океанах (по массе) | 11 % |
121 | Содержание во Вселенной и космосе (по массе) | 75 % |
122 | Содержание в Солнце (по массе) | 75 % |
123 | Содержание в метеоритах (по массе) | 2,4 % |
124 | Содержание в организме человека (по массе) | 10 % |
200 | Свойства атома | |
201 | Атомная масса (молярная масса)* | 1,00784-1,00811 а. е. м. (г/моль) |
202 | Электронная конфигурация | 1s 1 |
203 | Электронная оболочка | K1 L0 M0 N0 O0 P0 Q0 R0 |
204 | Радиус атома (вычисленный) | 53 пм |
205 | Эмпирический радиус атома | 25 пм |
206 | Ковалентный радиус* | 31 пм |
207 | Радиус иона (кристаллический) | H + 0,1815 Вт/(м·К) (при 300 K) |
500 | Кристаллическая решётка | |
511 | Кристаллическая решётка #1 | |
512 | Структура решётки | Гексагональная |
513 | Параметры решётки | a = 3,780 Å, c = 6,167 Å |
514 | Отношение c/a | 1,631 |
515 | Температура Дебая | 110 K |
516 | Название пространственной группы симметрии | P63/mmc |
517 | Номер пространственной группы симметрии | 194 |
900 | Дополнительные сведения | |
901 | Номер CAS | 12385-13-6 |
201* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.
206* Ковалентный радиус водорода согласно [1] и [3] составляет 31±5 пм и 32 пм соответственно.
408* Удельная теплота испарения (энтальпия кипения ΔHкип) водорода согласно [4] составляет 0,916 кДж/моль.
410* Молярная теплоемкость водорода согласно [3] составляет 28,47 Дж/(K·моль).
Физические свойства водорода:
При стандартных температуре и давлении водород – бесцветный, не имеющий запаха и вкуса, нетоксичный двухатомный газ с химической формулой H2.
Водород – самый лёгкий газ. Он легче воздуха в 14,5 раз. Поэтому, например, мыльные пузыри, наполненные водородом, на воздухе стремятся вверх.
Плотность водорода (Н2) составляет 0,00008988 г/см 3 при 20 °C и иных стандартных условиях ; а также 0,0000899 г/см 3 при 0 °C и иных стандартных условиях .
Общеизвестно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Теплопроводность водорода при 300 K составляет 0,1815 Вт/(м·К). Теплопроводность водорода примерно в 7 раз выше теплопроводности воздуха – 0,0243 Вт/(м·К).
Водород (Н2) почти не растворяется в воде и органических растворителях. Так, растворимость водорода в воде составляет 0,000157 г/100 г (при температуре 25 °C).
Водород растворяется в металлах: алюминии, железе, никеле, палладии, платине, практически не растворим в серебре. Растворимость в железе и меди мешает при выплавке этих металлов, так как приводит к образованию пустот. Так, растворимость водорода в железе (объемов водорода на объем железа) составляет: при 500 о С – 0,05; при 700 о С – 0,14; при 900 о С – 0,37; при 1100 о С – 0,55; при 1200 о С – 0,65; при 1350 о С – 0,80; при 1450 о С – 0,87; при 1550 о С – 2,05. Растворимость водорода в палладии составляет 850 объёмов H2 на 1 объём Pd.
При обычных условиях и выше −80 о С при расширении водород разогревается, а не охлаждается как большинство газов (“нормально” он начинает себя вести ниже −80 о С).
При комнатной температуре водород представляет собой равновесную смесь орто-Н2 (75%) и пара-Н2 (25%) форм. В молекулах ортоводорода (температура плавления −259,10 °C, температура кипения −252,56 °C) ядерные спины направлены одинаково, а у параводорода (температура плавления −259,32 °C, температура кипения −252,89 °C) – противоположно друг другу.
Температура кипения водорода (Н2) составляет −252,77 °C [согласно https://ru.wikipedia.org/wiki/Водород)].
Жидкий водород существует в очень узком интервале температур от −252,77 до −259,19 °C. Жидкий водород – это бесцветная жидкость, очень лёгкая (плотность при −253 °C составляет 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП). В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2.
Температура плавления водорода (Н2) составляет −259,19 °C [согласно https://ru.wikipedia.org/wiki/Водород)].
Твёрдый водород, температура плавления −259,19 °C, плотность 0,0807 г/см³ (при −262 °C) – снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм.
Температура разложения водорода (Н2) составляет 1700-5000 °C.
Критические параметры водорода (Н2) очень низкие: критическая температура водорода −239,91 °C и критическое давление водорода 1,297 МПа [согласно https://ru.wikipedia.org/wiki/Водород)]. Этим объясняются трудности при сжижении водорода.
Скорость звука в водороде (Н2) составляет: 1284 м/с (при 0 °C, состояние вещества – газ), 1301 м/с (при 18 °C, состояние вещества – газ), 1463 м/с (при 100 °C, состояние вещества – газ).
Водород коррозионно неактивен.
В смеси с воздухом и кислородом водород пожаровзрывоопасен, что обусловлено низким значением минимальной энергии зажигания водородно-воздушной смеси (0,017 мДж), высоким значением минимальной теплоты сгорания (121000 кДж/кг) и широкой областью горения и детонации.
Химические свойства водорода. Взаимодействие водорода. Реакции с водородом:
При нормальных условиях водород химически малоактивен.
Химические свойства водорода связаны со строением его электронной оболочки: в атоме один валентный электрон (как у щелочных металлов), а для завершения внешнего электронного слоя не хватает одного электрона (как у атомов гелия и других галогенов).
Поэтому в химических реакциях атом водорода может отдавать или принимать электрон, проявляя при этом в соединениях как положительную, так и отрицательную степени окисления: +1, 0 или –1.
Степень окисления +1 водород проявляет в соединениях с более электроотрицательными неметаллами (H2O, NH3, HCl и пр.); степень окисления 0 водород проявляет в молекулах протия H2, дейтерия D2, трития T2, протодейтерия HD, прототрития HT и дейтеротрития DT, т.к. эти молекулы образуются за счет ковалентных неполярных связей; степень окисления –1 водород проявляет в соединениях с металлами, кремнием и бором (NaH, LiH, Ca2H, SiH4 и пр.).
В соединениях с неметаллами водород образует ковалентную связь, в соединениях с металлами – ионную связь. В газообразном состоянии водород находится в виде двухатомных молекул, соединенных неполярной ковалентной связью.
Поскольку для водорода возможны положительная и отрицательная степени окисления, водород может проявлять и восстановительные, и окислительные свойства.
Проявляя окислительные свойства, водород взаимодействует с активными металлами.
Проявляя восстановительные свойства, водород взаимодействует с оксидами и галогенидами. В соединениях водород гораздо сильнее проявляет свои восстановительные свойства, чем окислительные. Водород является самым сильным восстановителем после угля, алюминия и кальция. Это свойство используются в промышленности для получения металлов и неметаллов (простых веществ) из оксидов.
Атомарный водород значительно химически активнее молекулярного.
Химическая активность водорода увеличивается при повышении температуры, под действием ультрафиолетового и радиоактивного излучений.
Получение водорода:
Водород может быть получен в результате:
Применение водорода:
Водород используется во многих областях промышленности и быту:
– в химической промышленности при получении некоторых металлов;
– в нефтеперерабатывающей промышленности в процессах гидрокрекинга и гидроочистки Он способствует увеличению глубины переработки сырой нефти и повышению качества конечных продуктов;
– в пищевой промышленности для производства твердых жиров из растительных масел. Водород зарегистрирован в качестве пищевой добавки E949;
– в атомной энергетике;
– в качестве ракетного топлива;
– для сварки и резки металлов при высокой температуре. Температура горения водорода в кислороде составляет 2600 °C.