что такое атф какова его роль в жизнедеятельности организма
АТФ: роль в организме и польза добавок
Консультант в сети магазинов Fizcult
Наш организм производит АТФ, чтобы получить энергию для движения, но зачастую этой энергии бывает недостаточно. Стоит ли в этом случае принимать ATФ в форме добавки?
Аденозинтрифосфат, или АТФ, является основным источником энергии, который поддерживает все процессы в организме. На самом деле, если в организме прекращается производство АТФ, это значит, что вы. что ж, вы мертвы.
Долгое время АТФ считался химическим веществом, которое организм способен синтезировать из других питательных веществ, но не может получить из самостоятельной добавки. Тем не менее, прием таблеток или порошков АТФ может принести ощутимую пользу вашим тренировкам.
Что собой представляет АТФ
В каждой молекуле АТФ есть три фосфатные группы (трифосфат). При высвобождении из молекулы фосфатных групп выделяется огромное количество энергии. Организм использует эту энергию для осуществления важнейших процессов жизнедеятельности. К ним относятся транспортировка белков и липидов (жиров) в клетки и из клеток, коммуникации между клетками, синтез ДНК и РНК и, наконец, мышечные сокращения, которые делают возможным движение.
Каким образом АТФ дает энергию
В процессе двигательной активности организм постоянно производит новые молекулы АТФ, чтобы удовлетворять потребность клеток в энергии. Запасов готового АТФ в мышечной ткани хватает лишь на пару секунд. В ходе интенсивной мышечной активности энергия расходуется очень быстро, поэтому организму требуется достаточное количество фосфокреатина, глюкозы и кислорода для пополнения запасов АТФ.
Некоторые люди принимают добавки с креатином, чтобы получить больше энергии для выполнения кратковременных, высокоинтенсивных физических упражнений. Креатин обеспечивает повышение энергии за счет увеличения поступления фосфокреатина, который организм может использовать для дальнейшего формирования большего количества АТФ. Потребление углеводов перед тренировкой работает аналогичным образом. Принимая углеводы, вы повышаете уровень глюкозы в крови. Глюкозу, в свою очередь, также можно использовать для получения АТФ в ходе процесса, называемого гликолизом.
Польза добавок с АТФ
Разве в этом случае нет смысла исключить промежуточное звено и просто принимать добавки с АТФ? И да, и нет. Некоторые исследования указывают на позитивные результаты, но в основном это были результаты опытов, проведенных на лабораторных крысах. Последующие исследования на людях не были столь же многообещающими. Однако это не означает, что добавки с АТФ не обладают полезными свойствами. Пусть они и не позволяют напрямую увеличить запасы АТФ в мышечной ткани, но они содействуют улучшению притока крови к активной ткани, повышению физической работоспособности и ускорению восстановления.
Повышение силовых показателей и выносливости
В ходе исследования 2004 года, опубликованного в Журнале Medicine & Science in Sports & Exercise, было обнаружено, что две недели приема добавок АТФ не повлияли на увеличение запасов АТФ в мышечной ткани. Однако испытуемые, принимающие АТФ, выполнили больше повторов жима лежа при нагрузке 70% одноповторного максимума, чем испытуемые, которые принимали плацебо.
Еще одно исследование, опубликованное в Журнале International Society of Sports Nutrition, продемонстрировало, что прием в течение 15 дней подряд 400 мг АТФ способствовал уменьшению мышечной усталости и помог испытуемым более эффективно использовать энергию в ходе интенсивных упражнений по сравнению с членами контрольной группы.
Исследователи из Университета Тампа установили, что в ходе 12-недельной программы силовых тренировок у испытуемых, ежедневно принимающих 400 мг АТФ, значительно улучшились показатели одноповторного максимума в приседаниях со штангой и становой тяге по сравнению с испытуемыми, принимающими плацебо-вещества. Исследование также показало, что у атлетов, которые принимали добавки, толщина мышц квадрицепса увеличилась вдвое больше, чем у тех, кто принимал плацебо.
Увеличение кровотока
Помимо улучшения мышечной функции, прием добавок АТФ также содействует вазодилатации, или расширению артерий. Более широкие сосуды означают, что больше топлива – в частности, больше кислорода и глюкозы – быстрее поступит в активные мышцы. Вазодилатация также содействует выведению из мышечной ткани метаболических отходов, таких как молочная кислота и мочевина, и обеспечивает поступление большего количества питательных веществ для ускорения восстановления мышц.
Улучшение восстановления
Исследование 2017 года, опубликованное в Журнале Американского колледжа питания, продемонстрировало, что прием добавок с АТФ помогает предотвратить снижение запасов АТФ после интенсивных тренировок. Испытуемые, которые принимали добавки, также показали большую мощность, чем члены группы плацебо, в ходе выполнения повторяющихся анаэробных тестов Вингейта (Wingate).
Есть ли у добавок с АТФ побочные эффекты?
На сегодняшний день нет никаких известных побочных эффектов приема аденозинтрифосфата. Но учтите, что самое длинное исследование АТФ продолжалось всего 12 недель. Эффекты более длительного использования добавок с АТФ не изучены.
Взаимодействует ли АТФ с другими добавками?
АТФ безопасно комбинировать с другими добавками. Более того, порой это дает позитивный синергетический эффект и позволяет усилить полезное действие таких добавок, как креатин и бета-аланин.
В каком количестве и в какой форме лучше принимать добавки с АТФ?
Добавки с АТФ чаще всего продаются в форме таблеток; также ингредиент АТФ можно найти в составе некоторых порошковых добавок. Эксперты в области здравоохранения считают, что если вы хотите увеличить уровень АТФ во время физических упражнений, лучше всего принимать креатин моногидрат.
Независимо от формы добавки, для максимизации полезных свойств необходимо принимать 400 мг АТФ.
Когда лучше принимать АТФ?
До сегодняшнего дня нет окончательных выводов исследований касательно оптимального времени приема и дозировки добавок с АТФ. Существующие исследования показывают, что лучше всего принимать 400 мг АТФ за 30 минут до начала тренировки. В дни, когда у вас нет тренировок, принимайте АФТ натощак за 30 минут до первого приема пищи.
Что такое атф какова его роль в жизнедеятельности организма
Содержание
Химические свойства
Систематическое наименование АТФ:
9-β-D-рибофуранозиладенин-5′-трифосфат, или 9-β-D-рибофуранозил-6-амино-пурин-5′-трифосфат.
Химически АТФ представляет собой трифосфорный эфир аденозина, который является производным аденина и рибозы.
Пуриновое азотистое основание — аденин — соединяется β-N-гликозидной связью с 1′-углеродом рибозы. К 5′-углероду рибозы последовательно присоединяются три молекулы фосфорной кислоты, обозначаемые соответственно буквами: α, β и γ.
АТФ относится к так называемым макроэргическим соединениям, то есть к химическим соединениям, содержащим связи, при гидролизе которых происходит освобождение значительного количества энергии. Гидролиз макроэргических связей молекулы АТФ, сопровождаемый отщеплением 1 или 2 остатков фосфорной кислоты, приводит к выделению, по различным данным, от 40 до 60 кДж/моль.
Высвобожденная энергия используется в разнообразных процессах, протекающих с затратой энергии.
Роль в организме
Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Все это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.
Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:
Пути синтеза
В организме АТФ синтезируется из АДФ, используя энергию окисляющихся веществ:
Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование. Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.
Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.
В организме АТФ является одним из самых часто обновляемых веществ, так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.
Биология. 11 класс
§ 8. Строение и функции РНК. АТФ
Строение и функции РНК. РНК, так же как и ДНК, представляет собой биополимер, построенный из нуклеотидов. Однако молекулы РНК имеют ряд особенностей. Вы знаете, что в состав нуклеотидов РНК вместо дезоксирибозы входит рибоза, а вместо тимина (Т) — урацил (У). Кроме того, молекулы РНК значительно короче ДНК и представлены одной полинуклеотидной цепью, а не двумя.
Лишь некоторые вирусы имеют двухцепочечные молекулы РНК, представляющие собой генетический материал этих неклеточных форм.
*Количество нуклеотидов в молекулах ДНК, как правило, исчисляется миллионами, в то время как полинуклеотидные цепи РНК обычно состоят из 75—3000 мономерных звеньев. Известно, что некоторые РНК могут включать десятки тысяч нуклеотидов, но это является не правилом, а исключением.*
Молекулы РНК могут принимать различную пространственную конфигурацию, прежде всего за счет образования водородных связей. Но, в отличие от ДНК, эти связи формируются не между двумя разными цепями, а между отдельными участками одной и той же цепи, комплементарными друг другу.
*Содержание ДНК в клетках организма сравнительно постоянно, а количество РНК сильно варьирует. Молекулы РНК обеспечивают синтез белков, поэтому наибольшее их содержание характерно для клеток, активно вырабатывающих белки. Это, например, секреторные клетки пищеварительных и эндокринных желез, синтезирующие ферменты и белковые гормоны, лейкоциты, продуцирующие антитела, и т. д.*
Существует несколько видов РНК, различающихся по строению молекул, содержанию в клетке и выполняемым функциям. Все виды РНК синтезируются на определенных участках одной из цепей ДНК. Такой синтез называется матричным, поскольку молекула ДНК является матрицей (т. е. образцом, моделью) для построения молекул РНК.
Рибосомные РНК (рРНК) составляют более 80 % всех РНК клетки. Молекулы рРНК соединяются с особыми белками и образуют рибосомы — органоиды, в которых происходит синтез белков из аминокислот.
*Молекулы рРНК составляют более 50 % массы рибосомы и имеют сложную объемную структуру. Бóльшую часть цепи рРНК составляют комплементарные участки. Они соединяются водородными связями и приобретают спиральную конфигурацию. Взаимодействуя с рибосомными белками, одна или несколько молекул рРНК компактно укладываются в пространстве. Так формируются субъединицы рибосом — структурные компоненты этих органоидов.
Установлено, что рРНК в составе рибосомы выполняют не только структурную функцию, но и каталитическую. В процессе синтеза белка они ускоряют образование пептидных связей между аминокислотами, т. е. действуют подобно ферментам. Такие молекулы РНК, обладающие каталитическим действием, были названы рибозимами (сокращение от «рибонуклеиновая кислота» и «энзим»). Кроме рРНК, известны и другие рибозимы. Они могут катализировать расщепление самих себя или других молекул РНК, а также соединять фрагменты РНК друг с другом.
До открытия рибозимов единственными биологическими катализаторами считались ферменты. За исследование каталитических свойств рибонуклеиновых кислот американские молекулярные биологи С. Олтмен и Т. Чек в 1989 г. были награждены Нобелевской премией.*
Транспортные РНК (тРНК) — самые маленькие из молекул РНК, участвующих в синтезе белков. В среднем они состоят из 80 нуклеотидов. тРНК связывают аминокислоты, доставляют их в рибосомы и обеспечивают правильное включение этих аминокислот в полипептидную цепь. Для каждой из 20 белокобразующих аминокислот существует как минимум одна особая разновидность тРНК, а для некоторых аминокислот — несколько. Содержание тРНК составляет около 15 % от общего количества клеточных РНК.
Все тРНК имеют сходное строение. Благодаря образованию внутримолекулярных водородных связей молекулы тРНК приобретают особую структуру, в которой комплементарно связанные участки чередуются с петлями (рис. 8.1). Такая пространственная конфигурация была названа клеверным листом.
*Как и любая другая полинуклеотидная цепь, молекула тРНК имеет 5′- и 3′-концы. У всех тРНК на 5′-конце находится гуаниловый нуклеотид, а 3′-конец завершается последовательностью ЦЦА. Присоединение аминокислоты происходит именно к 3′-концу молекулы тРНК, поэтому он называется акцепторным хвостом.*
Матричные, или информационные, РНК (мРНК, иРНК) наиболее разнообразны по строению и длине цепей. Молекулы мРНК содержат информацию о первичной структуре определенных белков. Во время синтеза белков в рибосомах они служат матрицами, определяющими порядок расположения аминокислот в белковых молекулах. Поэтому биосинтез белка, так же как и синтез РНК, относится к матричным процессам. Количество мРНК не превышает 3—5 % всех РНК, содержащихся в клетке.
*У ядерных организмов каждая молекула мРНК, как правило, содержит закодированную информацию о структуре одного белка. Для бактерий и вирусов характерны мРНК, кодирующие несколько разных белков.*
Функции рассмотренных видов РНК связаны с процессами синтеза белка. Следовательно, рРНК, тРНК и мРНК обеспечивают реализацию наследственной информации, хранящейся в молекулах ДНК.
Коротко и простым языком про молекулы АТФ
Что оно такое – молекулы АТФ?!
В наших клетках происходят различные энергетические процессы: запасание и использование энергии, ее трансформация и высвобождение. Кажется невероятным, что какая-то абстрактная энергия вдруг может преобразовываться и создавать другие молекулы, выполняя при этом полезную работу для организма.
Для справки: АТФ (аденозинтрифосфат) – молекула, которая выполняет роль источника энергии для всех процессов в организме, в том числе, и для движения. Открыта эта молекула была в 1929 году. Главным источником для производства молекулы АТФ служит глюкоза.
По сути, молекула АТФ – это своеобразная молекулярная батарея, которая сохраняет энергию в те моменты, когда она не используется, и потом высвобождает энергию при необходимости организма.
Структура и формула энергетических молекул
При расщеплении молекулы АТФ происходит сокращение мышечного волокна, из-за чего выделяется энергия, позволяющая мышцам сокращаться.
Для того чтобы дать организму энергию АТФ проходит несколько этапов. В процессе каждого этапа вырабатывается большее количество энергии, но всегда то, которое затребовано самим организмом.
Главный источник для выработки АТФ — это глюкоза, которая расщепляется в клетках. Молекулы АТФ насыщают энергией длинные волокна мышечных тканей, которые содержат протеин — миозин. Именно так формируются мышечные клетки.
Когда наш организм отдыхает – цепочка процессов преображения молекулы АТФ идёт в обратную сторону. И в этих целях также задействована глюкоза. Созданные молекулы АТФ будут вновь использоваться, как только это станет необходимо организму.
Когда созданная молекулами энергия не нужна, она сохраняется в организме и высвобождается тогда, когда это потребуется.
Молекулы АТФ синтезируют три основные биохимические системы:
– Система гликогена и молочной кислоты
Что это дает нашему организму?!
Фосфагенная система – будет использоваться когда мышцы работают недолго, но очень интенсивно (порядка 10 секунд). Благодаря этой системе происходит постоянная циркуляция небольшого количества молекул АТФ в мышечных клетках. Такой энергии хватит на короткий забег или интенсивную силовую нагрузку в бодибилдинге.
Гликоген и молочная кислота — снабжают энергией организм медленнее, чем предыдущая система. Используется энергия АТФ, которой может хватить на полторы минуты интенсивной работы. В анаэробном режиме мышцы сокращаются крайне мощно и быстро. Именно благодаря этой системе можно пробежать 400 метров спринтерского бега или рассчитывать на более длительную интенсивную тренировку в зале. Но долгое время так работать не позволит ощущение боли в мышцах, которая появляется из-за переизбытка молочной кислоты.
Аэробное дыхание — эта система включается, если тренировка продолжается более двух минут. Тогда мышцы начинают получать энергию молекул АТФ из углеводов, жиров и протеинов. В этом случае АТФ синтезируется медленно, зато энергии хватает надолго — физическая активность может продолжаться несколько часов. Это происходит благодаря тому, что глюкоза распадается без препятствий, у неё нет никаких сторонних противодействий — как препятствует молочная кислота в предыдущем анаэробном процессе.
Роль АТФ в организме
После описания синтеза трех биохимических систем становится понятно, что основная роль АТФ в организме — это обеспечение энергией всех многочисленных биохимических процессов и реакций организма.
То есть большинство энергозатратных процессов у живых существ происходит благодаря АТФ.
Но кроме этого молекула АТФ играет важную роль в синтезе нуклеиновых кислот, регулирует различные биохимические процессы, передает гормональные сигналы клеткам организма и другое.
Вместо выводов
Итак, АТФ – это молекула, которая даёт энергию всем процессам, происходящим в организме, в том числе, она даёт энергию для движения.
Важная роль АТФ в организме и жизни человека доказана не только учёными, но и многими спортсменами, бодибилдерами, фитнес-тренерами. Понимание важности этого вопроса помогает сделать тренировки более эффективными и правильно рассчитать свои физнагрузки.
Для всех, кто занимается силовыми тренировками в зале, фитнесом, бегом и другими видами спорта, нужно понимать и помнить – какие блоки упражнений необходимо выполнять в то или иное время тренировки. Благодаря этому можно откорректировать форму фигуры, проработать мышечную структуру, снизить лишний вес и добиться других улучшающих результатов для своего организма.
Энергетический обмен
Обмен веществ
Энергетический обмен
Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).
Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.
Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.
Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).
Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.
Пластический обмен
АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.
В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.