что такое ассемблер простыми словами

Ассемблер для начинающих

В любом деле главное — начать. Или вот еще хорошая поговорка: «Начало — половина дела». Но иногда даже не знаешь как подступиться к интересующему вопросу. В связи с тем, что воспоминания мои еще свежи, спешу поделиться своими соображениями с интересующимися.

что такое ассемблер простыми словами. Смотреть фото что такое ассемблер простыми словами. Смотреть картинку что такое ассемблер простыми словами. Картинка про что такое ассемблер простыми словами. Фото что такое ассемблер простыми словами

Скажу сразу, что лично я ассемблирую не под PC, а под микроконтроллеры. Но это не имеет большого значения, ибо (в отличие от микроконтроллеров AVR) система команд данных микроконтроллеров с PC крайне схожа. Да и, собственно говоря, ассемблер он и в Африке ассемблер.

Конечно, я не ставлю своей целью описать в этой статье всё необходимое от начала и до конца. Благо, по ассемблеру написано уже невообразимое число литературы. И да, мой опыт может отличаться от опыта других программистов, но я считаю не лишним изложить основную концепцию этого вопроса в моем понимании.

Для начала успокою любознательных новобранцев: ассемблер — это совсем не сложно, вопреки стереотипному мнению. Просто он ближе к «земле», то бишь к архитектуре. На самом деле, он очень прост, если ухватить основную идею. В отличие от языков высокого уровня и разнообразных специализированных платформ для программирования (под всем перечисленным я понимаю всякое вроде C++, MatLAB и прочих подобных штук, где требуются программерские навыки), команд тут раз-два и обчелся. По началу даже, когда мне нужно было посчитать двойной интеграл, эта задача вызывала лишь недоумение: как при помощи такого скудного количества операций можно совершить подобную процедуру? Ведь образно говоря, на ассемблере можно разве что складывать, вычитать и сдвигать числа. Но с помощью ассемблера можно совершать сколь угодно сложные операции, а код будет выходить крайне лёгкий. Вот даже для примера, нужно вам зажечь светодиод, который подключен, например, к нулевому контакту порта номер 2, вы просто пишете:
bset P2.0
И, как говорится, никаких проблем. Нужно включить сразу штуки четыре, подключенных последовательно? Да запросто:
mov P2, #000fh
Да, тут я подразумеваю, что начинающий боец уже знаком хотя бы со системами счисления. Ну хотя бы с десятичной. 😉

Итак, для достижения успеха в деле ассемблирования, следует разбираться в архитектуре (в моем случае) микроконтроллера. Это раз.

Кстати, одно из больных мест в познании архитектуры — это организация памяти. Тут на Хабре я видела соответствующую статью: habrahabr.ru/blogs/programming/128991. Еще могу упомянуть ключевые болевые точки: прерывания. Штука не сложная, но по началу (почему-то) тяжелая для восприятия.

Если перед вами стоит сложная задача и вы даже не знаете как по началу к ней подступиться, лучше всего написать алгоритм. Это воистину спасает. А по началу, даже если программа совершенно не сложная, лучше всё же начать с алгоритма, ибо этот процесс помогает разложить всё в голове по местам. Возвращаясь к примеру с вычислением двойного интеграла по экспериментальным данным, обдумывала алгоритм я весь день, но зато потом программку по нему написала всего за 20 минут. Плюс алгоритм будет полезен при дальнейшей модернизации и/или эксплуатации программы, а то ассемблерный код, временами, если и будет понятен построчно, то чтобы разобраться в чем же общая идея, придется немало потрудиться.

Итак, второй ключ к успеху — подробно написанный и хорошо продуманный алгоритм. Настоятельно рекомендую не садиться сразу за аппарат и писать программу. Ничего дельного вы с ходу не напишете. Это два.

Собственно, хотелось бы как Фандорин написать: «Это т-т-три»… Но, боюсь, на этом пока можно остановиться. Хотя хотелось бы добавить еще несколько рекомендаций и пряников.

Подводя итог моему несколько сумбурному монологу, ключевые моменты в программировании на ассемблере — это знание архитектуры и связное построение мыслей. Конечно, не обязательно сразу с головой кидаться в штудировании литературы с описанием внутренностей того же PC, но общее представление (повторюсь, хотя бы для начала) будет очень нужно.

А теперь обещанные пряники! Вот я тут распинаюсь о каком-то непонятном ассемблере, а что же в нем, собственно говоря, хорошего? Да много всего! Во-первых, конечно, не нужно запоминать много команд, используемых библиотек и прочей сопутствующей дребедени. Всего парочка команд и, считайте, вы во всеоружии. Во-вторых, в связи с крайней близостью к машинным кодам, вы можете делать практически всё, что душе угодно (в отличие от тех же языков высокого уровня)! В-третьих, ассемблерный код, по причине максимальной лаконичности в формулировках, выполняется крайне быстро.

В общем, сплошные плюсы. На этой оптимистической ноте разрешите откланяться.

Источник

Assembler

Assembler — язык программирования низкого уровня, представляющий собой формат записи машинных команд, удобный для восприятия человеком.

Команды языка ассемблера один в один соответствуют командам процессора и, фактически, представляют собой удобную символьную форму записи (мнемокод) команд и их аргументов. Также язык ассемблера обеспечивает базовые программные абстракции: связывание частей программы и данных через метки с символьными именами и директивы.

Директивы ассемблера позволяют включать в программу блоки данных (описанные явно или считанные из файла); повторить определённый фрагмент указанное число раз; компилировать фрагмент по условию; задавать адрес исполнения фрагмента, менять значения меток в процессе компиляции; использовать макроопределения с параметрами и др.

Каждая модель процессора, в принципе, имеет свой набор команд и соответствующий ему язык (или диалект) ассемблера.

Достоинства и недостатки

Синтаксис

Общепринятого стандарта для синтаксиса языков ассемблера не существует. Однако, существуют стандарты де-факто — традиционные подходы, которых придерживаются большинство разработчиков языков ассемблера. Основными такими стандартами являются Intel-синтаксис и AT&T-синтаксис.

Общий формат записи инструкций одинаков для обоих стандартов:

Опкод — непосредственно мнемоника инструкции процессору. К ней могут быть добавлены префиксы (повторения, изменения типа адресации и пр.). В качестве операндов могут выступать константы, названия регистров, адреса в оперативной памяти и пр.. Различия между стандартами Intel и AT&T касаются, в основном, порядка перечисления операндов и их синтаксиса при различных методах адресации.

Используемые мнемоники обычно одинаковы для всех процессоров одной архитектуры или семейства архитектур (среди широко известных — мнемоники процессоров и контроллеров Motorola, ARM, x86). Они описываются в спецификации процессоров.

Директивы

Кроме инструкций, программа может содержать директивы: команды, не переводящиеся непосредственно в машинные инструкции, а управляющие работой компилятора. Набор и синтаксис их значительно разнятся и зависят не от аппаратной платформы, а от используемого компилятора (порождая диалекты языков в пределах одного семейства архитектур). В качестве набора директив можно выделить:

Происхождение и критика термина «язык ассемблера»

Данный тип языков получил свое название от названия транслятора (компилятора) с этих языков — ассемблера (англ. assembler — сборщик). Название последнего обусловлено тем, что на первых компьютерах не существовало языков более высокого уровня, и единственной альтернативой созданию программ с помощью ассемблера было программирование непосредственно в кодах.

Язык ассемблера в русском языке часто называют «ассемблером» (а что-то связанное с ним — «ассемблерный»), что, согласно английскому переводу слова, неправильно, но вписывается в правила русского языка. Однако, сам ассемблер (программу) тоже называют просто «ассемблером», а не «компилятором языка ассемблера» и т. п.

Использование термина «язык ассемблера» также может вызвать ошибочное мнение о существовании единого языка низкого уровня, или хотя бы стандарта на такие языки. При именовании языка, на котором написана конкретная программа, желательно уточнять, для какой архитектуры она предназначена и на каком диалекте языка написана.

Источник

Что такое ассемблер и нужно ли его изучать

Этому языку уже за 70, но на пенсию он пока не собирается.

что такое ассемблер простыми словами. Смотреть фото что такое ассемблер простыми словами. Смотреть картинку что такое ассемблер простыми словами. Картинка про что такое ассемблер простыми словами. Фото что такое ассемблер простыми словами

что такое ассемблер простыми словами. Смотреть фото что такое ассемблер простыми словами. Смотреть картинку что такое ассемблер простыми словами. Картинка про что такое ассемблер простыми словами. Фото что такое ассемблер простыми словами

Есть традиция начинать изучение программирования с вывода на экран строки «Hello world!». На языке Python, например, это всего одна команда:

Всё просто, понятно и красиво! Но есть язык программирования, в котором, чтобы получить тот же результат, нужно написать солидный кусок кода:

Это ассемблер. Только не нужно думать, что он плох. Просто Python — это язык высокого уровня, а ассемблер — низкого. Одна команда Python при выполнении вызывает сразу несколько операций процессора, а каждая команда ассемблера — всего одну операцию.

Сложно? Давайте разбираться.

что такое ассемблер простыми словами. Смотреть фото что такое ассемблер простыми словами. Смотреть картинку что такое ассемблер простыми словами. Картинка про что такое ассемблер простыми словами. Фото что такое ассемблер простыми словами

Программист, консультант, специалист по документированию. Легко и доступно рассказывает о сложных вещах в программировании и дизайне.

Немного о процессорах и машинном языке

Чтобы объяснить, что такое язык ассемблера, начнём с того, как вообще работает процессор и на каком языке с ним можно «разговаривать».

Процессор — это электронное устройство (сейчас крошечная микросхема, а раньше процессоры занимали целые залы), не понимающее слов и цифр. Он реагирует только на два уровня напряжения: высокий — единица, низкий — ноль. Поэтому каждая процессорная команда — это последовательность нулей и единиц: 1 — есть импульс, 0 — нет.

Для работы с процессором используется машинный язык. Он состоит из инструкций, записанных в двоичном коде. Каждая инструкция определяет одну простую машинную операцию: арифметическую над числами, логическую (поразрядную), ввода-вывода и так далее.

Например, для Intel 8088 инструкция 0000001111000011B — это операция сложения двух чисел, а 0010101111000011B — вычитания.

Программировать на машинном языке нелегко — приходится работать с огромными цепочками нулей и единиц. Трудно написать или проверить такую программу, а уж тем более разобраться в чужом коде.

Поэтому много лет назад был создан язык ассемблера, в котором коды операций обозначались буквами и сокращениями английских слов, отражающих суть команды. Например, команда mov ax, 6 означает: «переместить число 6 в ячейку памяти AX».

Когда и как был создан ассемблер?

Это произошло ещё в сороковых годах прошлого века. Ассемблер был создан для первых ЭВМ на электронных лампах, программы для которых писали на машинном языке. А так как памяти у компьютеров было мало, то команды вводили, переключая тумблеры и нажимая кнопки. Даже несложные вычисления занимали много времени.

Проблему решили, когда ЭВМ научились хранить программы в памяти. Уже в 1950 году была разработана первая программа-транслятор, которая переводила в машинный код программы, написанные на понятном человеку языке. Эту программу назвали программой-сборщиком, а язык — языком ассемблера (от англ. assembler — сборщик).

Появление ассемблера сильно облегчило жизнь программистов. Они смогли вместо двоичных кодов использовать команды, состоящие из близких к обычному языку условных обозначений. Кроме того, ассемблер позволил уменьшить размеры программ — для машин того времени это было важно.

Как устроен язык ассемблера?

Ассемблер можно считать языком второго поколения, если за первый принять машинный язык. Он работает непосредственно с процессором, и каждая его команда — это инструкция процессора, а не операционной или файловой системы. Перевод языка ассемблера в машинный код называется ассемблированием.

Коды операций в языке ассемблера мнемонические, то есть удобные для запоминания:

Регистрам и ячейкам памяти присваиваются символические имена, например:

EAX, EBX, AX, AH — имена для регистров;

meml — имя для ячейки памяти.

Например, так выглядит команда сложения чисел из регистров AX и BX:

А это команда вычитания чисел из регистров AX и BX:

Кроме инструкций, в языке ассемблера есть директивы — команды управления компилятором, то есть программой-ассемблером.

Вот некоторые из них:

Не думайте, что ассемблер — всего лишь набор инструкций процессора с удобной для программиста записью. Это полноценный язык программирования, на котором можно организовать циклы, условные переходы, процедуры и функции.

Вот, например, код, на ассемблере, выводящий на экран цифры от 1 до 10:

Здесь действие будет выполняться в цикле — как, например, в циклах for или do while в языках высокого уровня.

Единого стандарта для языков ассемблера нет. В работе с процессорами Intel разработчики придерживаются двух синтаксисов: Intel и AT&T. Ни у того ни у другого нет особых преимуществ: AT&T — стандартный синтаксис в Linux, а Intel используется в мире Microsoft.

Одна и та же команда в них выглядит по-разному.

Например, в синтаксисе Intel:

mov eax, ebx — команда перемещает данные из регистра eax в регистр ebx.

В синтаксисе AT&T эта команда выглядит так:

Почему для разных семейств процессоров нужен свой ассемблер?

Дело в том, что у каждого процессора есть набор характеристик — архитектура. Это его конструкция и принцип работы, а также регистры, адресация памяти и используемый набор команд. Если у процессоров одинаковая архитектура, то говорят, что они из одного семейства.

Так как наборы команд для разных архитектур процессоров отличаются друг от друга, то и программы на ассемблере, написанные для одних семейств, не будут работать на процессорах из других семейств. Поэтому ассемблер называют машинно-ориентированным языком.

Кому и зачем нужен язык ассемблера?

Даже из нашего примера «Hello, World!» видно, что ассемблер не так удобен в разработке, как языки высокого уровня. Больших программ на этом языке сейчас никто не пишет, но есть области, где он незаменим:

Если вы хотите разрабатывать новые микропроцессоры или стать реверс-инженером, то есть смысл серьёзно заняться изучением языка ассемблера.

Востребованы ли программисты на ассемблере сегодня?

Конечно. Хотя на сайтах по поиску работу вы вряд ли найдёте заявки от работодателей с заголовками: «Нужен программист на ассемблере», зато там много таких, где требуется знание ассемблера дополнительно к языкам высокого уровня: C, C++ или Python. Это вакансии реверс-инженеров, специалистов по компьютерной безопасности, разработчиков драйверов и программ для микроконтроллеров/микропроцессоров, системных программистов и другие.

Предлагаемая зарплата — обычная в сфере IT: 80–300 тысяч рублей в зависимости от квалификации и опыта. Вот, например, вакансия реверс-инженера на HeadHunter, где требуется знание ассемблера:

что такое ассемблер простыми словами. Смотреть фото что такое ассемблер простыми словами. Смотреть картинку что такое ассемблер простыми словами. Картинка про что такое ассемблер простыми словами. Фото что такое ассемблер простыми словами

что такое ассемблер простыми словами. Смотреть фото что такое ассемблер простыми словами. Смотреть картинку что такое ассемблер простыми словами. Картинка про что такое ассемблер простыми словами. Фото что такое ассемблер простыми словами

что такое ассемблер простыми словами. Смотреть фото что такое ассемблер простыми словами. Смотреть картинку что такое ассемблер простыми словами. Картинка про что такое ассемблер простыми словами. Фото что такое ассемблер простыми словами

Стоит ли начинать изучение программирования с языка ассемблера?

Нет, так делать не нужно. Для этого есть несколько причин:

Поэтому, даже если вы решили заняться профессией, связанной с ассемблером, изучение программирования вам лучше начинать с языка высокого уровня. А уж ассемблер после него будет выучить несложно.

обложка: Полина Суворова для Skillbox Media

Источник

Почему Ассемблер — это круто, но сложно

Потому что это круто. Но сложно.

Есть высокоуровневые языки — это те, где вы говорите if — else, print, echo, function и так далее. «Высокий уровень» означает, что вы говорите с компьютером более-менее человеческим языком. Другой человек может не понять, что именно у вас написано в коде, но он хотя бы сможет прочитать слова.

Но сам компьютер не понимает человеческий язык. Компьютер — это регистры памяти, простые логические операции, единицы и нули. Поэтому прежде чем ваша программа будет исполнена процессором, ей нужен переводчик — программа, которая превратит высокоуровневый язык программирования в низкоуровневый машинный код.

Ассемблер — это собирательное название языков низкого уровня: код всё ещё пишет человек, но он уже гораздо ближе к принципам работы компьютера, чем к принципам мышления человека.

Вариантов Ассемблера довольно много. Но так как все они работают по одинаковому принципу и используют (в основном) одинаковый синтаксис, мы будем все подобные языки называть общим словом «Ассемблер».

Как мыслит процессор

Чтобы понять, как работает Ассемблер и почему он работает именно так, нам нужно немного разобраться с внутренним устройством процессора.

Кроме того, что процессор умеет выполнять математические операции, ему нужно где-то хранить промежуточные данные и служебную информацию. Для этого в самом процессоре есть специальные ячейки памяти — их называют регистрами.

Регистры бывают разного вида и назначения: одни служат, чтобы хранить информацию; другие сообщают о состоянии процессора; третьи используются как навигаторы, чтобы процессор знал, куда идти дальше, и так далее. Подробнее — в расхлопе ↓

Общего назначения. Это 8 регистров, каждый из которых может хранить всего 4 байта информации. Такой регистр можно разделить на 2 или 4 части и работать с ними как с отдельными ячейками.

Указатель команд. В этом регистре хранится только адрес следующей команды, которую должен выполнить процессор. Вручную его изменить нельзя, но можно на него повлиять различными командами переходов и процедур.

Регистр флагов. Флаг — какое-то свойство процессора. Например, если установлен флаг переполнения, значит процессор получил в итоге такое число, которое не помещается в нужную ячейку памяти. Он туда кладёт то, что помещается, и ставит в этот флаг цифру 1. Она — сигнал программисту, что что-то пошло не так.

Флагов в процессоре много, какие-то можно менять вручную, и они будут влиять на вычисления, а какие-то можно просто смотреть и делать выводы. Флаги — как сигнальные лампы на панели приборов в самолёте. Они что-то означают, но только самолёт и пилот знают, что именно.

Сегментные регистры. Нужны были для того, чтобы работать с оперативной памятью и получать доступ к любой ячейке. Сейчас такие регистры имеют по 32 бита, и этого достаточно, чтобы получить 4 гигабайта оперативки. Для программы на Ассемблере этого обычно хватает.

Так вот: всё, с чем работает Ассемблер, — это команды процессора, переменные и регистры.

Здесь нет привычных типов данных — у нас есть только байты памяти, в которых можно хранить что угодно. Даже если вы поместите в ячейку какой-то символ, а потом захотите работать с ним как с числом — у вас получится. А вместо привычных циклов можно просто прыгнуть в нужное место кода.

Команды Ассемблера

Каждая команда Ассемблера — это команда для процессора. Не операционной системе, не файловой системе, а именно процессору — то есть в самый низкий уровень, до которого может дотянуться программист.

Любая команда на этом языке выглядит так:

Метка — это имя для фрагмента кода. Например, вы хотите отдельно пометить место, где начинается работа с жёстким диском, чтобы было легче читать код. Ещё метка нужна, чтобы в другом участке программы можно было написать её имя и сразу перепрыгнуть к нужному куску кода.

Команда — служебное слово для процессора, которое он должен выполнить. Специальные компиляторы переводят такие команды в машинный код. Это сделано для того, чтобы не запоминать сами машинные команды, а использовать вместо них какие-то буквенные обозначения, которые проще запомнить. В этом, собственно, и выражается человечность Ассемблера: команды в нём хотя бы отдалённо напоминают человеческие слова.

Операнды отвечают за то, что именно будут делать команды: какие ячейки брать для вычислений, куда помещать результат и что сделать с ним дополнительно. Операндом могут быть названия регистров, ячейки памяти или служебные части команд.

Комментарий — это просто пояснение к коду. Его можно писать на любом языке, и на выполнение программы он не влияет. Примеры команд:

mov eax, ebx ; Пересылаем значение регистра EBX в регистр EAX mov x, 0 ; Записываем в переменную x значение 0 add eax, х ; Складываем значение регистра ЕАХ и переменной х, результат отправится в регистр ЕАХ

Здесь нет меток, первыми идут команды (mov или add), а за ними — операнды и комментарии.

Пример: возвести число в куб

Если нам понадобится вычислить х³, где х занимает ровно один байт, то на Ассемблере это будет выглядеть так.

Первый вариант

mov al, x ; Пересылаем x в регистр AL imul al ; Умножаем регистр AL на себя, AX = x * x movsx bx, x ; Пересылаем x в регистр BX со знаковым расширением imul bx ; Умножаем AX на BX. Результат разместится в DX:AX

Второй вариант

mov al, x ; Пересылаем x в регистр AL imul al ; Умножаем регистр AL на себя, AX = x * x cwde ; Расширяем AX до EAX movsx ebx, x ; Пересылаем x в регистр EBX со знаковым расширением imul ebx ; Умножаем EAX на EBX. Поскольку x – 1-байтовая переменная, результат благополучно помещается в EAX

На любом высокоуровневом языке возвести число в куб можно одной строкой. Например:

на худой конец x = x*x*x.

Хитрость в том, что когда каждая из этих строк будет сведена к машинному коду, этого кода может быть и 5 команд, и 10, и 50, и даже 100. Чего стоит вызов объекта Math и его метода pow: только на эту служебную операцию (ещё до самого возведения в куб) может уйти несколько сотен и даже тысяч машинных команд.

А на Ассемблере это гарантированно пять команд. Ну, или как реализуете.

Почему это круто

Ассемблер позволяет работать с процессором и памятью напрямую — и делать это очень быстро. Дело в том, что в Ассемблере почти не тратится зря процессорное время. Если процессор работает на частоте 3 гигагерца — а это примерно 3 миллиарда процессорных команд в секунду, — то очень хороший код на Ассемблере будет выполнять примерно 2,5 миллиарда команд в секунду. Для сравнения, JavaScript или Python выполнят в тысячу раз меньше команд за то же время.

Ещё программы на Ассемблере занимают очень мало места в памяти. Именно поэтому на этом языке пишут драйверы, которые встраивают прямо в устройства, или управляющие программы, которые занимают несколько килобайт. Например, программа, которая находится в брелоке сигнализации и управляет безопасностью всей машины, занимает всего пару десятков килобайт. А всё потому, что она написана для конкретного процессора и использует его возможности на сто процентов.

Справедливости ради отметим, что современные компиляторы С++ дают машинный код, близкий по быстродействию к Ассемблеру, но всё равно немного уступают ему.

Почему это сложно

Для того, чтобы писать программы на Ассемблере, нужно очень любить кремний:

Теперь добавьте к этому отсутствие большинства привычных библиотек для работы с чем угодно, сложность чтения текста программы, медленную скорость разработки — и вы получите полное представление о программировании на Ассемблере.

Для чего всё это

Ассемблер незаменим в таких вещах:

На самом деле на Ассемблере можно даже запилить свой сайт с форумом, если у программиста хватает квалификации. Но чаще всего Ассемблер используют там, где даже скорости и возможностей C++ недостаточно.

Источник

Погружение в assembler. Полный курс по программированию на асме от ][

что такое ассемблер простыми словами. Смотреть фото что такое ассемблер простыми словами. Смотреть картинку что такое ассемблер простыми словами. Картинка про что такое ассемблер простыми словами. Фото что такое ассемблер простыми словами

Содержание статьи

Это первая (вступительная) статья курса. Курс рассчитан на тех, кто в целом знаком с высокоуровневым программированием и только приступает к изучению ассемблера.

Читай далее:

Но что такое программирование само по себе по своей сути, вне зависимости от какого-либо языка? Разнообразие ответов поражает. Наиболее часто можно услышать такое определение: программирование — это составление инструкций или команд для последовательного исполнения их машиной с целью решить ту или иную задачу. Такой ответ вполне справедлив, но, на мой взгляд, не отражает всей полноты, как если бы мы назвали литературу составлением из слов предложений для последовательного прочтения их читателем. Я склонен полагать, что программирование ближе к творчеству, к искусству. Как любой вид искусства — выражение творческой мысли, идеи, программирование представляет собой отражение человеческой мысли. Мысль же бывает и гениальная, и совершенно посредственная.

Но, каким бы видом программирования мы ни занимались, успех зависит от практических навыков вкупе со знанием фундаментальных основ и теории. Теория и практика, изучение и труд — вот краеугольные камни, на которых основывается успех.

В последнее время ассемблер незаслуженно находится в тени других языков. Обусловлено это глобальной коммерциализацией, направленной на то, чтобы в максимально короткие сроки получить как можно большую прибыль от продукта. Иными словами, массовость взяла верх над элитарностью. А ассемблер, по моему мнению, ближе к последнему. Гораздо выгоднее в сравнительно небольшие сроки поднатаскать ученика в таких, например, языках, как С++, С#, PHP, Java, JavaScript, Python, чтобы он был более-менее способен создавать ширпотребный софт, не задаваясь вопросами, зачем и почему он так делает, чем выпустить хорошего специалиста по ассемблеру. Примером тому служит обширнейший рынок всевозможных курсов по программированию на любом языке, за исключением ассемблера. Та же тенденция прослеживается как в преподавании в вузах, так и в учебной литературе. В обоих случаях вплоть до сегодняшнего дня большая часть материала базируется на ранних процессорах серии 8086, на так называемом «реальном» 16-битном режиме работы, операционной среде MS-DOS! Возможно, что одна из причин в том, что, с одной стороны, с появлением компьютеров IBM PC преподавателям пришлось перейти именно на эту платформу из-за недоступности других. А с другой стороны, по мере развития линейки 80х86 возможность запуска программ в режиме DOS сохранялась, что позволяло сэкономить деньги на приобретение новых учебных компьютеров и составление учебников для изучения архитектуры новых процессоров. Однако сейчас такой выбор платформы для изучения совершенно неприемлем. MS-DOS как среда выполнения программ безнадежно устарела уже к середине девяностых годов, а с переходом к 32-битным процессорам, начиная с процессора 80386, сама система команд стала намного более логичной. Так что бессмысленно тратить время на изучение и объяснение странностей архитектуры реального режима, которые заведомо никогда уже не появятся ни на одном процессоре.

Что касается выбора операционной среды для изучения ассемблера, то, если говорить о 32-битной системе команд, выбор сравнительно невелик. Это либо операционные системы Windows, либо представители семейства UNIX.

Также следует сказать несколько слов о том, какой именно ассемблер выбрать для той или другой операционной среды. Как известно, для работы с процессорами х86 используются два типа синтаксиса ассемблера — это синтаксис AT&T и синтаксис Intel. Эти синтаксисы представляют одни и те же команды совершенно по-разному. Например, команда в синтаксисе Intel выглядит так:

В синтаксисе же AT&T уже будет иной вид:

В среде ОС UNIX более популярен синтаксис типа AT&T, однако учебных пособий по нему нет, он описывается исключительно в справочной и технической литературе. Поэтому логично выбрать ассемблер на основе синтаксиса Intel. Для UNIX-систем есть два основных ассемблера — это NASM (Netwide Assembler) и FASM (Flat Assembler). Для линейки Windows популярностью пользуются FASM и MASM (Macro Assembler) от фирмы Microsoft, и также существовал еще TASM (Turbo Assembler) фирмы Borland, которая уже довольно давно отказалась от поддержки собственного детища.

В данном цикле статей изучение будем вести в среде Windows на основе языка ассемблера MASM (просто потому, что он мне нравится больше). Многие авторы на начальном этапе изучения ассемблера вписывают его в оболочку языка си, исходя из тех соображений, что перейти к практическим примерам в операционной среде якобы довольно трудно: нужно знать и основы программирования в ней, и команды процессора. Однако и такой подход требует хоть мало-мальских начатков знаний в языке си. Данный же цикл статей от самого своего начала будет сосредоточен только на самом ассемблере, не смущая читателя ничем иным, ему непонятным, хотя в дальнейшем и будет прослеживаться связь с другими языками.

Следует отметить, что при изучении основ программирования, и это касается не только программирования на ассемблере, крайне полезно иметь представление о культуре консольных приложений. И совершенно нежелательно начинать обучение сразу же с создания окошечек, кнопочек, то есть с оконных приложений. Бытует мнение, что консоль — архаичный пережиток прошлого. Однако это не так. Консольное приложение почти лишено всякой внешней зависимости от оконной оболочки и сосредоточено главным образом на выполнении конкретно поставленной задачи, что дает прекрасную возможность, не отвлекаясь ни на что другое, концентрировать внимание на изучении базовых основ как программирования, так и самого ассемблера, включая знакомство с алгоритмами и их разработку для решения практических задач. И к тому моменту, когда настанет время перейти к знакомству с оконными приложениями, за плечами уже будет внушительный запас знаний, ясное представление о работе процессора и, самое главное, осознание своих действий: как и что работает, зачем и почему.

Что такое ассемблер?

Само слово ассемблер (assembler) переводится с английского как «сборщик». На самом деле так называется программа-транслятор, принимающая на входе текст, содержащий условные обозначения машинных команд, удобные для человека, и переводящая эти обозначения в последовательность соответствующих кодов машинных команд, понятных процессору. В отличие от машинных команд, их условные обозначения, называемые также мнемониками, запомнить сравнительно легко, так как они представляют собой сокращения от английских слов. В дальнейшем мы будем для простоты именовать мнемоники ассемблерными командами. Язык условных обозначений и называется языком ассемблера.

На заре компьютерной эры первые ЭВМ занимали целые комнаты и весили не одну тонну, имея объем памяти с воробьиный мозг, а то и того меньше. Единственным способом программирования в те времена было вбивать программу в память компьютера непосредственно в цифровом виде, переключая тумблеры, проводки и кнопочки. Число таких переключений могло достигать нескольких сотен и росло по мере усложнения программ. Встал вопрос об экономии времени и денег. Поэтому следующим шагом в развитии стало появление в конце сороковых годов прошлого века первого транслятора-ассемблера, позволяющего удобно и просто писать машинные команды на человеческом языке и в результате автоматизировать весь процесс программирования, упростить, ускорить разработку программ и их отладку. Затем появились языки высокого уровня и компиляторы (более интеллектуальные генераторы кода с более понятного человеку языка) и интерпретаторы (исполнители написанной человеком программы на лету). Они совершенствовались, совершенствовались — и, наконец, дошло до того, что можно просто программировать мышкой.

Таким образом, ассемблер — это машинно ориентированный язык программирования, позволяющий работать с компьютером напрямую, один на один. Отсюда и его полная формулировка — язык программирования низкого уровня второго поколения (после машинного кода). Команды ассемблера один в один соответствуют командам процессора, но поскольку существуют различные модели процессоров со своим собственным набором команд, то, соответственно, существуют и разновидности, или диалекты, языка ассемблера. Поэтому использование термина «язык ассемблера» может вызвать ошибочное мнение о существовании единого языка низкого уровня или хотя бы стандарта на такие языки. Его не существует. Поэтому при именовании языка, на котором написана конкретная программа, необходимо уточнять, для какой архитектуры она предназначена и на каком диалекте языка написана. Поскольку ассемблер привязан к устройству процессора, а тип процессора жестко определяет набор доступных команд машинного языка, то программы на ассемблере не переносимы на иную компьютерную архитектуру.

Поскольку ассемблер всего лишь программа, написанная человеком, ничто не мешает другому программисту написать свой собственный ассемблер, что часто и происходит. На самом деле не так уж важно, язык какого именно ассемблера изучать. Главное — понять сам принцип работы на уровне команд процессора, и тогда не составит труда освоить не только другой ассемблер, но и любой другой процессор со своим набором команд.

Синтаксис

Общепринятого стандарта для синтаксиса языков ассемблера не существует. Однако большинство разработчиков языков ассемблера придерживаются общих традиционных подходов. Основные такие стандарты — Intel-синтаксис и AT&T-синтаксис.

Общий формат записи инструкций одинаков для обоих стандартов:

Опкод — это и есть собственно ассемблерная команда, мнемоника инструкции процессору. К ней могут быть добавлены префиксы (например, повторения, изменения типа адресации). В качестве операндов могут выступать константы, названия регистров, адреса в оперативной памяти и так далее. Различия между стандартами Intel и AT&T касаются в основном порядка перечисления операндов и их синтаксиса при разных методах адресации.

Используемые команды обычно одинаковы для всех процессоров одной архитектуры или семейства архитектур (среди широко известных — команды процессоров и контроллеров Motorola, ARM, x86). Они описываются в спецификации процессоров.

Например, процессор Zilog Z80 наследовал систему команд Intel i8080, расширил ее и поменял некоторые команды (и обозначения регистров) на свой лад. Например, сменил Intel-команду mov на ld. Процессоры Motorola Fireball наследовали систему команд Z80, несколько ее урезав. Вместе с тем Motorola официально вернулась к Intel-командам, и в данный момент половина ассемблеров для Fireball работает с Intel-командами, а половина — с командами Zilog.

Директивы

Кроме ассемблерных команд, программа может содержать директивы — команды, не переводящиеся непосредственно в машинные инструкции, а управляющие работой компилятора. Набор и синтаксис их значительно разнятся и зависят не от аппаратной платформы, а от используемого компилятора. В качестве набора директив можно выделить:

Достоинства и недостатки

К достоинствам можно отнести следующее:

За недостатки можно принять:

Почему следует изучать язык ассемблера?

В современной практике индустриального программирования языки ассемблера применяются крайне редко. Для разработки низкоуровневых программ практически в большинстве случаев используется язык си, позволяющий достигать тех же целей многократно меньшими затратами труда, причем с такой же, а иногда и большей эффективностью получаемого исполняемого кода (последнее достигается за счет применения оптимизаторов). На ассемблере сейчас реализуются очень специфические участки ядер операционных систем и системных библиотек. Более того, программирование на ассемблере было вытеснено и из такой традиционно ассемблерной области, как программирование микроконтроллеров. Большей частью прошивки для них также пишут на си. Тем не менее программирование на языке ассемблера очень часто применяется при написании программ, использующих возможности процессора, не реализуемые языками высокого уровня, а также при программировании всевозможных нестандартных программистских хитростей. Отдельные ассемблерные модули, как и ассемблерные вставки в текст на других языках, присутствуют и в ядрах операционных систем, и в системных библиотеках того же языка си и других языков высокого уровня. Сегодня едва ли кому придет в голову сумасшедшая мысль писать крупную программу на чистом ассемблере.

Так зачем же тратить время на его изучение? По ряду веских причин, и вот одна из них: ассемблер — это краеугольный камень, на котором покоится все бесконечное пространство программирования, начиная от рождения первого процессора. Каждый физик мечтает разгадать тайну строения вселенной, найти эти загадочные первичные неделимые (низкоуровневые) элементы, из которых она состоит, не удовлетворяясь лишь смутным о том представлением квантовой теории. Ассемблер же и есть та первичная материя, из которой состоит вселенная процессора. Он — тот инструмент, который дает человеку способность мыслить в терминах машинных команд. А подобное умение просто необходимо любому профессиональному программисту, даже если никогда в жизни он не напишет ни единой ассемблерной строчки. Нельзя отрицать того, что невозможно стать математиком, совершенно не имея понятия об элементарной арифметике. На каком бы языке вы ни писали программы, необходимо хотя бы в общих чертах понимать, что конкретно будет делать процессор, исполняя ваше высочайшее повеление. Если такого понимания нет, программист начинает бездумно применять все доступные операции, совершенно не ведая, что на самом деле он творит.

Вообще, профессиональный пользователь компьютера, системный ли администратор, или программист, может позволить себе что-то не знать, но ни в коем случае не может позволить не понимать сути происходящего, как устроена вычислительная система на всех ее уровнях, от электронных логических схем до громоздких прикладных программ. А непонимание чего-то влечет за собой ощущение в глубине подсознания некоей загадочности, непостижимого таинства, происходящего по мановению чьей-то волшебной палочки. Такое ощущение для профессионала недопустимо категорически. Он просто обязан быть уверен вплоть до глубинных слоев подсознания, что то устройство, с которым он имеет дело, ничего волшебного и непознаваемого собой не представляет.

Иными словами, до тех пор пока существуют процессоры, ассемблер будет необходим.

В этом отношении совершенно не важно, какую конкретно архитектуру и язык какого конкретного ассемблера изучать. Зная один язык ассемблера, ты с успехом можешь начать писать на любом другом, потратив лишь некоторое время на изучение справочной информации. Но самое главное в том, что, умея мыслить языком процессора, ты всегда будешь знать, что, для чего, почему и зачем происходит. А это уже не просто уровень программирования мышкой, а путь к созданию программного обеспечения, несущего печать великого мастерства.

Ассемблер — программирование или искусство?

Скажем так, все зависит от того, в чьих руках он находится. Ассемблер — это первичный элемент мира процессора, из сочетаний этих элементов складывается его душа, его самосознание. Подобно тому, как вся музыка, написанная в истории человечества, состоит из сочетаний семи нот, так и сочетание ассемблерных команд наполняет компьютерный мир цифровой жизнью. Кто знает лишь три аккорда — это «попса», кому же известна вся палитра — это классика.

Почему же наука так жаждет проникнуть в квантовые глубины и захватить в свои руки неуловимый первичный кирпичик материи? Чтобы получить над ней власть, изменять ее по своей воле, стать на уровень Творца Вселенной. В чьи руки попадет такая власть — это еще вопрос. В отличие от науки, в мире программирования тайн нет, нам известны кирпичики, его составляющие, а следовательно, и та власть над процессором, которую нам дает знание ассемблера.

Чтобы программирование на языке ассемблера поднялось на уровень искусства, нужно постичь его красоту, скрывающуюся за потоком единиц и нулей. Как и в любой отрасли человеческой деятельности, в программировании можно быть посредственностью, а можно стать Мастером. И то и другое отличает степень культуры, образования, труда и, главное, то, сколько души автор вкладывает в свое творение.

Ассемблер и терминатор

Не так давно Джеймс Кэмерон выпустил в свет 3D-версию второго «Терминатора», и в качестве интересного исторического факта можно отметить один любопытный момент из жизни киборга-убийцы.

что такое ассемблер простыми словами. Смотреть фото что такое ассемблер простыми словами. Смотреть картинку что такое ассемблер простыми словами. Картинка про что такое ассемблер простыми словами. Фото что такое ассемблер простыми словами Кадр из фильма «Терминатор»

Здесь мы видим «зрение» терминатора, а слева на нем отображается ассемблерный листинг. Судя по нему, знаменитый Уничтожитель работал на процессоре MOS Technology 6502 либо на MOS Technology 6510. Этот процессор впервые был разработан в 1975 году, использовался на компьютерах Apple и, помимо всего прочего, на знаменитых игровых приставках того времени Atari 2600 и Nintendo Entertainment System (у нас более известной как Dendy). Имел лишь три 8-разрядных регистра: А-аккумулятор и два индексных регистра X и Y. Такое малое их количество компенсировалось тем, что первые 256 байт оперативной памяти (так называемая нулевая страница) могли адресоваться специальным образом и фактически использовались в качестве 8-разрядных или 16-разрядных регистров. У данного процессора было 13 режимов адресации на всего 53 команды. У терминатора идет цепочка инструкций LDA-STA-LDA-STA. В семействе 6502 программы состояли чуть менее чем полностью из LDA/LDY/LDX/STA/STX/STY:

Чтение и запись в порты ввода-вывода также выполнялись этими командами, и программа терминатора имеет вполне осмысленный вид, а не представляет собой бестолковую фантазию сценариста: MOS Technology 6502 / Система команд.

Отрасли практического применения

Ранее упоминалось, что в наше время ассемблер почти вытеснен языками высокого уровня. Однако и по сей день ему находится применение. Приведем некоторые примеры.

Вместо заключения

Мы продолжим погружаться в ассемблер в следующих статьях цикла. Темы этого цикла мы в целом определили, но если у тебя есть какие-нибудь идеи или пожелания — смело пиши в комменты, все учтем. 🙂

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *