что такое аэробное и анаэробное дыхание
Различия между аэробным и анаэробным дыханием
Из этой статье вы узнаете, в чем заключаются различия между двумя основными типами клеточного дыхания: аэробным и анаэробным. Мы рассмотрим основы каждого типа дыхания, какие организмы их используют и какие продукты они создают.
Клеточное дыхание
Клеточное дыхание – это процесс, при котором организмы расщепляют глюкозу из пищи, чтобы создать пригодную для использования форму энергии, называемую АТФ. Сокращенно от аденозинтрифосфата, АТФ легко переносит энергию по организму. Когда одна из трех фосфатных групп АТФ отрывается, энергия высвобождается для использования всеми клетками. Ясно, что клеточное дыхание – важный процесс, и существует два основных типа клеточного дыхания: аэробное и анаэробное. Давайте рассмотрим и сравним эти процессы.
Аэробное дыхание
Аэробное дыхание может происходить только в присутствии кислорода. Во время аэробного дыхания реагенты кислород и глюкоза превращаются в продукты диоксид углерода, воду и АТФ.
Эти продукты образуются во время аэробного дыхания в течение трех этапов: гликолиза, цикла лимонной кислоты и окислительного фосфорилирования. Во время гликолиза молекулы глюкозы распадаются на две более мелкие молекулы пирувата. В цикле лимонной кислоты электроны высвобождаются и собираются молекулами акцептора. Во время окислительного фосфорилирования электроны помогают создать градиент концентрации с ионами водорода, которые помогают молекуле, называемой АТФ-синтаза, создавать АТФ.
Анаэробное дыхание
Анаэробное дыхание происходит при отсутствии кислорода. Оно состоит из двух этапов. Первым этапом, как и при аэробном дыхании, является гликолиз, который производит АТФ из реагирующей глюкозы. На втором этапе, ферментации, образуется молочная кислота или этанол, в зависимости от типа ферментации. Молочная кислота образуется в результате ферментации молочной кислоты, а этанол – в результате ферментации спирта. Вот почему мы используем дрожжи в производстве хлеба или пива, чтобы создать этанол.
Анаэробное дыхание обычно осуществляется микроорганизмами, такими как бактерии, которые являются прокариотическими и лишены ядра. Бактерии и клетки животных используют молочнокислое брожение. Примером молочнокислого брожения является ощущение жжения в мышцах после пробежки. Это происходит, когда ваши мышечные клетки не получают достаточно кислорода и им приходится дышать анаэробно. Молочная кислота дает вашим мышцам ощущение жжения, а недостаток АТФ заставляет вас чувствовать усталость.
Отличия
Как мы уже говорили, основное различие между аэробным и анаэробным дыханием заключается в том, присутствует ли кислород. Для аэробного дыхания нужен кислород, а для анаэробного – нет. Это присутствие кислорода определяет, какие продукты будут созданы. Во время аэробного дыхания вырабатываются углекислый газ, вода и АТФ. Во время анаэробного дыхания образуются молочная кислота, этанол и АТФ.
При анаэробном дыхании синтезируется только 2 молекулы АТФ, а при аэробном дыхании – 36. Более того, аэробное дыхание имеет тенденцию происходить у эукариотических организмов, клетки которых имеют ядро, тогда как анаэробное дыхание происходит у прокариотических организмов. Однако важно отметить, что животные подвергаются молочнокислой ферментации, которая является анаэробной. Это происходит, когда мышечные клетки не могут получать достаточно кислорода.
Подведение итогов
Клеточное дыхание – это процесс, при котором организмы вырабатывают АТФ из глюкозы. Это происходит в присутствии кислорода во время аэробного дыхания, и без доступа к кислороду во время анаэробного дыхания. Небольшие прокариотические организмы, такие как бактерии, обычно используют анаэробное дыхание для производства 2 молекул АТФ. Более крупные эукариотические организмы обычно используют аэробное дыхание для синтеза 36 молекул АТФ.
Аэробные и анаэробные нагрузки
Введение
Человеческий организм эволюционно рассчитан на такой образ существования, при котором в полной мере используются присущие высшим приматам качества: сила, скорость, ловкость, выносливость, изобретательность. Определенный уровень физической активности должен поддерживаться постоянно; на этом фоне человек способен переносить пиковые, очень интенсивные психофизические нагрузки (примерами могут послужить охота на саблезубого тигра или финальный матч чемпионата мира). Однако необходимыми и обязательными условиями, при которых такие перегрузки переживаются без опасных для здоровья последствий, являются общая тренированность, отсутствие врожденных и приобретенных инвалидизирующих аномалий, достаточный и сбалансированный рацион, а также длительный период релаксации и отдыха после экстремальных усилий, даже кратковременных.
Все это известно с незапамятных времен, хорошо изучено и по возможности учитывается спортивными врачами, методистами, тренерами. Именно «по возможности», поскольку профессиональный спорт международного уровня зачастую предъявляет требования, фатально конфликтующие с требованиями охраны здоровья. В постоянной борьбе за повышение рекордных показателей (которые для обычного человека уже давно являются запредельными и абсолютно недосягаемыми) специалисты ищут наиболее эффективные варианты тренировочного процесса и режима соревнований. Вопрос оптимального сочетания аэробных и анаэробных нагрузок остается открытым.
(их часто называют также кардионагрузками) отличаются от анаэробных (силовых) механизмом энергетического обмена.
Нагрузкой аэробного типа называют такие виды физической активности, которые длятся достаточно долго и требуют, прежде всего, интенсивного снабжения легких воздухом. Кислород в этом случае является основным источником энергии; регулярные и продолжительные нагрузки такого рода, – а это любые виды бега на средние и дальние дистанции (включая бег на роликах и лыжах), плавание, велосипедный спорт, а также чрезвычайно популярная в 1980-х годах аэробика (ритмическая гимнастика), – укрепляют сердечнососудистую систему, повышают выносливость и оказывают мощное положительное влияние на психическую сферу. Кроме того, при условии свободного поступления чистого свежего воздуха интенсивная оксигенация тканей приводит к эффекту, известному в просторечье как «сжигание калорий», т.е. стимулирует метаболические процессы.
Анаэробная нагрузка требует интенсивной переработки ранее накопленных ресурсов. Имеются в виду депонированные в мышечной ткани запасы аденозинтрифосфорной кислоты (аденозинтрифосфат, АТФ), играющей роль аккумулируемого энергоносителя. Типичные примеры анаэробных нагрузок – пауэрлифтинг (поднятие тяжестей), бег на короткие дистанции, бодибилдинг и т.д. Такого рода упражнения способствуют смещению существующего соотношения жировой и мышечной ткани в сторону последней, укрепляют структуры опорно-двигательного аппарата, вырабатывают выносливость и физическую силу.
Следует понимать, что разделение на аэробные и анаэробные упражнения является условным и подразумевает лишь преобладание (а не эксклюзивное использование) одного из описанных механизмов потребления энергии. Скажем, занятия легкой атлетикой требуют не только интенсивного потребления кислорода, но и хорошей анаэробной выносливости, тогда как тяжелоатлетические упражнения уже через 10-15 секунд активируют механизм усиленной оксигенации.
В спортивной медицине существует ряд численных показателей, позволяющих оценить степень «аэробности» нагрузок. Таковы, например, пороги анаэробного обмена (ПАНО), называемые также лактатными порогами (лактаты – соли молочной кислоты, биохимического маркера усталости), или показатель максимального потребления кислорода (МПК), по достижении которого организм задействует анаэробный способ энергетического метаболизма.
В целом, описанные виды нагрузки не являются ни взаимозаменяемыми, ни жестко альтернативными, – разница между ними, повторим, достаточно расплывчата. Однако важнейшей задачей тренера-методиста является разработка такого тренировочного плана, который обеспечил бы спортсмену преимущество в конкурентных соревнованиях по данному виду спорта.
Анаэробное и аэробное дыхание – особенности процесса. Клеточное дыхание
Обычное аэробное дыхание осуществляется при обязательном участии кислорода. Этот газ необходим для окисления липидов и углеводов. В результате реакции появляется энергия, необходимая для поддержания нормальной работы организма, а также углекислый газ и вода. При анаэробном дыхании роль окислителя выполняет кислород неорганических веществ – сульфатов, нитратов или других. То есть, для поддержания жизнедеятельности организма не требуется внешняя подпитка.
Клеточное дыхание является гораздо более медленным процессом, чем аэробное. Именно поэтому последнее для организма считается предпочтительным. Однако, в условиях нехватки О2, анаэробное дыхание отлично помогает человеку сохранять свое здоровье, поддерживать молодость.
Можно констатировать, что кислородное голодание для современного человека, не редкость. Из-за гиподинамии, загрязненности воздуха, различных нарушений здоровья О2 не поступает в организм в нужных количествах. Но даже при нормальном транспорте он может не усваиваться достаточно эффективно. Поэтому организм теряет возможность вырабатывать энергию в нужных количествах. Из-за этого человек быстро утомляется, его преследуют депрессии, стрессы и другие нарушения здоровья. В такой ситуации анаэробное дыхание становится настоящим спасением.
Благодаря умению клеток дышать без кислорода, организм получает недостающую энергию для поддержания своей жизнедеятельности. А значит, человек может не беспокоиться из-за болезней.
Однако, клеточное дыхание требует запуска некоторых внутренних механизмов оздоровления. Открыть резервы можно либо при помощи йоги, либо более бережно и быстро – с использованием ТДИ-01 «Третье дыхание». Благодаря занятиям на аппарате организм лучше усваивает кислород, поступающий в процессе аэробного дыхания. Клетки становятся здоровыми, их резервы раскрываются, и они научаются дышать без кислорода.
Тренажер достаточно использовать всего 15-20 минут в день и уже через несколько недель можно почувствовать значительное улучшение самочувствия.
Анаэробное дыхание на ТДИ-поможет восполнить недостаток энергии и вернет здоровье вам и вашей семье!
Анаэробное и аэробное дыхание
Процесс дыхания состоит из двух основных этапов. Первый, начальный, — анаэробное дыхание, в результате которого дыхательный субстрат (углеводы) распадается до простейших продуктов типа пировиноградной кислоты. Дальше превращение пировиноградной кислоты может проходить двумя путями: кислородным до конечных продуктов СО2 и Н2О или анаэробным по типу брожения. Таким образом, устанавливается определенная связь между дыханием и брожением. Учение о генетической связи между этими процессами было разработано С. П. Костычевым. Общую схему ставить в таком виде:
При дыхании такого типа жизнь зеленого растения продолжается недолго — оно погибает. Очевидно, происходит отравление продуктами обмена, которые образуются в этом случае.
Низкий энергетический эффект брожения также имеет существенное значение. Спирт содержит большой запас энергии, которая не используется при интрамолекулярном дыхании. Установлено, что для получения того же количества энергии в анаэробных условиях ткани высшего растения должны вследствие низкого энергетического уровня этого процесса израсходовать в 30-50 раз больше пластических веществ, чем при аэробном дыхании. В результате анаэробного дыхания ткани истощаются — они лишаются различных промежуточных веществ, которые обычно образуются при кислородном дыхании.
Существует взгляд на интрамолекулярное дыхание (брожение) у высших растений как на рудиментарную функцию. Наряду с аэробным дыханием в тканях растений в той или иной мере всегда происходят и процессы брожения. В тканях растений, нормально снабжающихся кислородом, они обнаружены во многих случаях. Так, продукты спиртового брожения (уксусный альдегид, этиловый спирт) накапливаются в интенсивно растущих органах растений, в сочных тканях различных плодов — лимонов, яблок, мандаринов.
Брожение, и дыхание тесно связаны между собой. Об этом свидетельствует прежде всего тот факт, что в растении найдены те же промежуточные продукты, которые образуются в дрожжах при спиртовом брожении. Так, во многих растениях обнаружены глюкозо-6-фосфат, фруктозо-6-фосфат, фруктозо-1,6-дифосфат. Эти фосфорные эфиры сахаров оказались в листьях гороха, сахарной свеклы, овса, ячменя, в прорастающих семенах гороха. В листьях ячменя обнаружены фосфоглицериновая и пировиноградная кислоты, в луке — пировиноградная кислота, в некоторых плодах — уксусный альдегид. Все эти соединения являются промежуточными продуктами спиртового брожения. О единстве и теснейшей связи процессов брожения и дыхания свидетельствует также то, что в растениях выявлены ферменты, катализирующие спиртовое брожение.
При аэробном дыхании последним акцептором водорода является кислород, и поэтому конечным продуктом окисления оказывается вода. При анаэробном дыхании к последним акцепторам водорода относятся другие вещества, образующиеся в процессе брожения субстрата. В. И. Палладии еще в 1912 г. указывал, что при аэробном дыхании весь водород глюкозы окисляется до воды исключительно кислородом воздуха. Образование спирта при брожении возможно потому, что последним акцептором водорода в этом случае является альдегид.
Экспериментально доказано, что дегидрогеназы и их коферменты НАД и НАДФ, катализирующие отщепление водорода, от окисляемых органических веществ, играют важную роль в процессах тканевого дыхания и при разных видах анаэробных брожений (спиртовом, молочнокислом, маслянокислом и др.).
Таким образом, в зависимости от того, к какому акцептору будет присоединен с помощью дегидрогеназ водород, образуются и соответствующие продукты, определяющие тип брожения (молочнокислое, спиртовое и др.). Для взаимодействия между акцептором водорода и соответствующей кодегидразой необходимо присутствие в клетке соответствующего фермента. Следовательно, анаэробное окисление не является патологическим процессом для высших растений. Наряду с аэробным дыханием брожение, очевидно, — один из постоянных процессов окислительного газообмена в их тканях. В разных тканях при различных условиях участие брожения в дыхательном газообмене может значительно изменяться. Но при этом анаэробные процессы в зависимости от внутренних и внешних условий происходят, очевидно, всегда.
Химизм анаэробной фазы дыхания (гликолиз)
Начальный этап анаэробного распада углеводов заключается в образовании ряда фосфорных эфиров сахаров (гексоз). Важную роль фосфорной кислоты в процессе анаэробного дыхания впервые установили русские биохимики Л. А. Иванов и А. Н. Лебедев, которые экспериментально доказали образование в этом процессе соединений сахара с фосфорной кислотой. С помощью различных ингибиторов было выяснено, что анаэробному распаду при брожении подвергается не свободная молекула гексозы, а ее фосфорный эфир, который образовался из гексозы и фосфорной кислоты и является активным и лабильным соединением в отличие от химически инертной молекулы гексозы. Активация молекулы гексозы, повышение ее реакционной способности происходят постепенно и проходят ряд этапов.
На первом этапе брожения и дыхания молекула глюкозы под действием фермента гексокииазы принимает остаток фосфорной кислоты от АТФ, которая превращается в АДФ, и в результате образуется глюкопиранозо-6-фосфат, превращающийся под действием фермента фосфогексоизомеразы (оксоизомеразы) в фруктофуранозо-6-фосфат. На дальнейшем этапе гликолиза фрукто- фуранозо-6-фосфата к нему присоединяются еще один остаток фосфорной кислоты. Источником энергии для образования данного эфира является также молекула АТФ. Эту реакцию катализирует фосфогексокиназа, активируемая ионами магния. В результате образуются фруктофуранозо-1,6-дифосфат и новая молекула аденозиндифосфата:
Далее молекула фруктозо-1,6-дифосфата под влиянием фермента альдолазы расщепляется на две молекулы фосфотриоз: фосфодиоксиацетон и 3-фосфоглицериновый альдегид. Фоcфодиоксиацетон под действием фермента фосфотриозоизомеразы полностью превращается в 3-фосфоглицериновый альдегид.
Следующий этап гликолиза заключается в окислении 3-фосфоглицеринового альдегида специфической дегидрогеназой и фосфорилировании глицериновой кислоты с использованием минеральной фосфорной кислоты. Образовавшаяся в результате этой реакции 1,3-дифосфоглицериновая кислота передает при участии фермента фосфоферазы один остаток фосфорной кислоты молекуле АДФ, которая превращается в АТФ, при этом образуется 3-фосфоглицериновая кислота. Последняя под действием фермента фосфоглицеромутазы переходит в 2-фосфоглицериновую кислоту, которая под влиянием фермента енолазы превращается в фосфоенолпировиноградную кислоту и наконец в пировиноградную кислоту. Процесс преобразования 3-фосфоглицеринового альдегида в 1,3-дифосфоглицериновую кислоту осуществляется по схеме:
Процесс превращения 1,3-дифосфоглицернновой кислоты пировиноградную происходит по такой схеме:
На рисунке выше приведены общая схема реакций распада глюкозы до пировиноградной кислоты в анаэробной фазе дыхания и обратные реакции, в результате которых из пировиноградной кислоты синтезируется глюкоза. Ферменты гликолитического распада глюкозы легко экстрагируются из клеток, поэтому считают, что они локализуются в растворимой части цитоплазмы.
Образованием пировиноградной кислоты из фосфоенолпирувата заканчивается гликолитическое расщепление гексозы. На каждый моль использованной в этих реакциях гексозы расходуются два моля АТФ, тогда как в реакциях превращения двух молекул 1,3-дифосфоглицериновой кислоты и двух молекул фосфоенолпировиноградной кислоты синтезируются четыре молекулы АТФ, в результате остаются неиспользованными две молекулы АТФ. Кроме того, в ходе окисления гексозы до пирувата восстанавливаются две молекулы НАДН2 или НАДФН2 (в зависимости от растений); каждая из них, окисляясь, образует по три молекулы АТФ, а всего — шесть молекул АТФ. Таким образом, при гликолитическом распаде гексозы, который является начальным этапом анаэробного дыхания, происходит потребление двух молекул АТФ, регенерация АДФ и синтез четырех новых молекул аденозинтрифосфата. Пировиноградная кислота, образовавшаяся в результате описанных реакций в анаэробных условиях, подвергается превращениям, которые осуществляются при спиртовом или молочнокислом брожении.
Химизм аэробной фазы дыхания
Установлено, что в процессе постепенного, окисления пировиноградной кислоты образуются различные промежуточные органические кислоты с четырьмя или шестью атомами углерода, встречающиеся в растениях.
Предложенная Г. Кребсом схема является дальнейшим развитием учения С. П. Костычева о генетической связи дыхания и брожения.
Рис. 41. Схема реакций анаэробного распада углеводов
Рис. 42. Цикл ди- и трикарбоновых кислот (цикл Кребса)
Таким образом, цикл Кребса заключается в образовании лимонной кислоты из щавелевоуксусной кислоты и ацетилкоэнзима А (ацетил-КоА) и регенерации щавелевоуксусной кислоты из лимонной.
Первая реакция в цикле — образование промежуточного продукта «активированной» уксусной кислоты в виде ацетил-КоА, который окончательно окисляется. Энергия, выделяющаяся в пяти реакциях окисления, фиксируется в виде макроэргических пирофосфатных связей аденозинтрифосфата. Это — следующие окислительно-восстановительные реакции: образование ацетил-коэнзима А; окисление лимонной и изолимонной кислот через цис-аконитовую до щавелевоянтарной кислоты, α-кетоглутаровой — до сукцинил-КоА, янтарной — до фумаровой, яблочной — до щавелевоуксусной, которая является основным соединением в цикле: она катализирует полный распад пировиноградной кислоты, после чего происходит регенерация щавелевоуксусной кислоты в циклическом процессе.
Таким образом, с каждым оборотом цикла исчезает одна молекула пировиноградной кислоты и от различных компонентов цикла отщепляется три молекулы СО2 и пять пар атомов водорода (электронов).
Органические кислоты, входящие в цикл, имеются в тканях почти всех растений. В растениях найдены также все важнейшие ферментные системы, участвующие в превращении этих органических кислот, а именно: аконитаза, дегидрогеназы изолимонной, яблочной и янтарной кислот, фумараза, карбоксилаза щавелевоянтарной кислоты. Все ферменты цикла трикарбоновых кислот сконцентрированы в матриксе митохондрий; здесь также обнаружены ферменты окисления жирных кислот и др. Считают, что основное назначение цикла. Кребса заключается в подготовке материала для синтетических процессов, происходящих во время роста молодых клеток. На такие процессы расходуются промежуточные продукты цикла: α-кетоглутаровая, фумаровая кислоты и др. Эти соединения могут быть исходными веществами для многочисленных реакций синтеза и обмена аминокислот, синтеза нуклеотидов, образования различных циклических соединений, жиров и других веществ.
Дополнительные материалы по теме:
Анаэробные и аэробные нагрузки
Поделиться
Если вы увлекаетесь спортом, то наверняка слышали о таких словосочетаниях, как аэробная и анаэробная нагрузка. В чем принципиальная разница между ними и как использовать разные подходы к тренировкам для достижения наилучшего результата? Обо всех подробностях физических нагрузок, используемых в профессиональном и любительском спорте, мы расскажем вам в этой статье.
Для достижения результата используются упражнения, главным источником энергии для которых является кислород. То есть такие тренировки направлены на укрепление всех тканей организма. Использовать их стали еще в семидесятые годы двадцатого века, а в современном фитнесе они занимают почетное место среди обязательных упражнений для поддержания отличной формы и быстрой потери веса.
Аэробные нагрузки – это:
Как видите, выбор действительно внушительный: при желании вы легко сможете подобрать подходящую аэробную нагрузку, которая не только поможет держать организм в тонусе, но и будет доставлять настоящее удовольствие.
Почему все тренеры в обязательном порядке рекомендуют чередовать различные типы нагрузок и не забывать о «кислородной тренировке»? Дело в том, что аэробные упражнения способны принести максимум пользы:
А еще во время выполнения таких упражнений отлично расходуются калории, за счет чего запускается процесс жиросжигания. В итоге организм быстрее теряет лишний вес.
Во время первых двадцати минут выполнения любых аэробных нагрузок быстро сжигается гликоген, полученный организмом за целый день. И только через полчаса от начала тренировки начинают расходоваться белки и жиры. Если тренировка занимает не менее сорока минут, то она проходит не зря: запущенный процесс жиросжигания продолжается еще в течение двух часов. Однако, для того чтобы аэробная нагрузка помогала быстрее худеть, придется скорректировать пищевые привычки:
Если после тренировки хочется есть, можно выпить натуральный йогурт или стакан протеинового коктейля от Herbalife Nutrition. Эти продукты не повлияют на положительный эффект, а вот пища, богатая углеводами, остановит процесс жиросжигания.
Это интенсивные и кратковременные упражнения с максимальным напряжением мышц. Во время таких тренировок организм практически не получает кислород, в результате чего увеличивает количество расходуемой энергии. Упражнения выполняют быстро, по несколько коротких подходов. К таким тренировкам относятся:
При этом все упражнения чередуются с кратковременными перерывами, которые позволяют организму восполнить недостаток кислорода. Такие тренировки помогают быстрее избавиться от лишнего веса, разогнать застойные явления, накачать мышцы и добиться красивого рельефа фигуры. Однако чрезмерная перегрузка очень опасна и может спровоцировать нарушения работы органов дыхания или сердечно-сосудистой системы. Именно поэтому анаэробные нагрузки нужно выполнять под внимательным контролем тренера.
С помощью правильного выполнения таких тренировок можно добиться отличных результатов:
Для достижения наилучших результатов рекомендуется сочетать анаэробные упражнения с правильным питанием. Для атлетов, выбравших этот способ набора мышечной массы, оптимальной станет диета с увеличенным количеством белка.
Нагрузки такого типа дают эффект при правильном и регулярном выполнении определенных упражнений. В механизм проработки мышц подключаются два основных фактора.
Анаэробный гликолиз. Во время выполнения упражнения мышцы расходуют весь свой запас кислорода: этого хватает для кратковременной нагрузки длительностью не более двенадцати секунд. После этого организм начинает потреблять кислород, и нагрузка превращается в аэробную. Однако весь эффект тренировки держится именно на гликолизе. Для того чтобы человек смог выполнять физические упражнения, нужна энергия, а ее организм получает из молекулы АТФ, которая есть, в том числе, в мышцах.
Анаэробный порог. Это показатель интенсивности выполнения упражнения, в результате которого определенное количество молочной кислоты превышает уровень ее нейтрализации. Для измерения этого порога можно использовать измерение частоты сердечных сокращений. Это позволит выявить тот ритм тренировок, в ходе которых процесс жиросжигания будет проходить наиболее активно.
При тренировках могут использоваться оба варианта получения кислорода. Во время аэробных нагрузок именно дыхание помогает правильно растрачивать энергию. Кислород окисляет углеводы, легкие активно перерабатывают этот газ и насыщают все ткани организма. В итоге дыхательная система становится крепче, а масса тела уменьшается. Чем отличается анаэробная нагрузка? Для выполнения упражнений кислород не нужен: роль окислителя играют вещества, содержащиеся в тканях. То есть фактически организм дышит на клеточном уровне. При этом нужно понимать, что использование только одного типа нагрузки – не совсем корректное решение. Если речь идет о тренировках ради быстрой потери веса, проработки мышц и получения красивого рельефа, то анаэробную и аэробную техники необходимо чередовать. Как именно – подскажет личный тренер. Хотя бы ради этого стоит несколько раз посетить тренажерный зал и разобраться, как работает ваше тело при определенных типах нагрузки.
Нужно понимать, что в чистом виде ни одного типа тренировок не существует. Как мы уже сказали выше, максимум через 12 секунд выполнения упражнение из анаэробного превращается в аэробное. Чтобы добиться максимального эффекта в тренировках, лучше выбрать оптимальный комплекс упражнений. Однако, прежде чем начинать серьезные нагрузки, нужно убедиться, что нет никаких противопоказаний:
Если вы сомневаетесь в том, что какое-то упражнение вам подходит, сначала лучше проконсультируйтесь с врачом, а затем расскажите об этом тренеру. Если противопоказаний нет, можно выбрать программу с упором на аэробные или анаэробные упражнения. В первом случае получится быстрее сбросить лишний вес и укрепить тело. Во втором – добиться красивого рельефа мышц.
Кроме вышеперечисленного списка есть целый ряд запретов. Например, анаэробные нагрузки не подходят начинающим спортсменам. В этом случае тренер составляет индивидуальную программу тренировок, куда постепенно вводит сложные интенсивные упражнения на тренажерах. Кроме того, анаэробные нагрузки строго противопоказаны беременным женщинам и людям, недавно перенесшим операции. У аэробных упражнений и здесь есть ряд отличий: будущим мамам, напротив, показаны регулярная ходьба и плавание. О возможности прибегнуть к другим нагрузкам нужно уточнять у своего врача. При этом анаэробные упражнения противопоказаны в период обострений респираторных заболеваний и при наличии варикозного расширения вен, а также во время реабилитации после хирургических вмешательств. Помните, что пренебрежение рекомендациями врачей приносит больше вреда, чем пользы. Возвращаться к прежним нагрузкам после травм и болезней стоит постепенно.
Ни одна тренировка не даст желанного результата, если не сменить привычный рацион. Что значит режим питания при аэробных или анаэробных нагрузках?
Кроме того, для повышения выносливости организма и поддержания общего тонуса можно использовать биологически активные добавки. Например, таблетки N-R-G* от Herbalife Nutrition на основе гуараны могут помочь повысить уровень энергии. Для восстановления после тренировки можно принять протеиновый коктейль «Формула 1». Большое количество белка насытит организм и поспособствует процессу жиросжигания.
Если вы планируете похудеть при помощи аэробных и анаэробных нагрузок, то нужно следовать нескольким советам от опытных бодибилдеров.
Но самый главный совет звучит так: не бросайте тренировки. Даже если вам кажется, что они не дают никакого результата – не отчаивайтесь. Организму требуется время, чтобы запустить процессы метаболизма. Зато через пару месяцев вы обнаружите очень приятный результат, а ваше тело скажет вам: «Спасибо»!