чем занимается генный инженер

Александр Панчин развеивает мифы и объясняет, чем занимаются генные инженеры

В рамках курса лекций премии Дмитрия Зимина «Просветитель» в библиотеке имени Некрасова автор книги «Сумма биотехнологии» Александр Панчин рассказал о ГМО, экспериментах с ДНК и генетическом оружии. «Афиша Daily» публикует избранные места из его выступления.

Ученые, создавая ГМО, играют в Бога?

«Игра в Бога» — по-видимому, эта фраза появилась, когда вышел фильм про Франкенштейна, ученого, который сделал монстра, вышедшего из-под контроля. Этот сюжет повторяется и в «Парке юрского периода»: ученые сделали монстров, те вышли из-под контроля и все закончилось плохо. И в сериале «Черное зеркало»: роботизированные пчелы, созданные учеными, тоже вышли из-под контроля. Тема Франкенштейна активно обыгрывается противниками ГМО. Frankenfood, еда, которая вас съест, — это очень впечатляющий образ. Но генные инженеры ничего такого не делают. Они вносят генетические изменения, мутации — все то же, что происходит в природе. Организмы передают гены друг другу, бактерии переносят гены растениям, растения переносят гены другим растениям, вирусы переносят гены людям — если бы не они, мы не были бы млекопитающими».

Зачем улучшать организмы?

«На самом деле мы далеки от совершенства. Эволюция делает самые разные классные и забавные штуки, но есть и что-то, что эволюция делает плохо, — это очевидно и хорошо изучено. Например, возьмем жирафа. У него есть возвратный гортанный нерв, который идет из мозга и возвращается вверх к гортани. Этот путь может занимать 4 метра. Просто когда-то у далеких предков жирафа не было длинной шеи, потому что они были рыбами. Тогда было удобно провести этот нерв вот так. Ну а дальше организмы вышли на сушу, начали отращивать себе шею, но не смогли перестроить свою генетическую программу, чтобы этот нерв пошел по другому пути. И получился очень длинный и неэффективный путь иннервации».

Почему у генных инженеров и биотехнологов получается лучше, чем у эволюции?

«Представьте себе, что вы сделали хороший мотоцикл. Но вам нужно перевозить больше людей, а мотоцикл на это не способен, и вы решили сделать автомобиль. Но эволюции придется переходить от мотоцикла к автомобилю постепенно, и переходная форма с высокой вероятностью будет не очень хорошим транспортным средством. Если вы находитесь на пике качества транспортного средства, то любое отклонение в сторону — это плохо. Поэтому такие мотоциклы не оставили бы, условно говоря, потомства и не смогли бы размножиться. Эволюция движется в сторону большей приспособленности. Чтобы получить автомобиль, нужно одновременно правильно поставить аккумулятор, сделать четыре колеса, установить коробку передач. Сразу все это сделать не удается, для этого как раз нужен разумный дизайнер».

Что собой представляет мусор в геноме?

«Мне как эволюционному биологу особенно прискорбно (или, наоборот, радостно) сообщить, что внутри мы особенно отвратительны. Внутри нас молекулы ДНК, и в молекуле ДНК очень много барахла — того, что не нужно, что занимает лишнее место. Некоторым людям кажется, что в ДНК не может быть мусора — мы же такие совершенные и классные. Разумный творец не мог такого допустить! Но как объяснить, что у лука геном в пять раз больше, чем у человека? Зачем он ему нужен? Если вы готовы признать, что у лука может быть мусор в ДНК, то почему вы думаете, что человек такой исключительный?

Исследователи из проекта ENCODE, который стоил миллиарды долларов, громко объявили, что геном человека на 80% функционален. То есть мусора по большому счету и нет. Но потом появилась и критика этого утверждения. В чем его проблема? Авторы проекта говорили, что на 20% ДНК приходится связующая функция. На это можно привести такую аналогию: вот жвачка прилипла к вашему ботинку — следовательно, функция ботинка в том, чтобы к нему прилипала жвачка. То, что где-то с молекулой ДНК происходит какая-то химическая реакция, вовсе не доказывает, что у нее есть какая-то функция. Более того, есть биологическая функция, которой подвергается вся ДНК — ДНК удваивается, это химический процесс, который происходит с любым участком. Поэтому можно прийти к выводу, что 100% ДНК функциональны, но это не так».

Как определить, функционален ли участок ДНК или нет?

«Был такой математик, Абрахам Вальд. Он работал на военно-воздушные силы во время Второй мировой, перед ним стояла задача — определить у самолетов те места, на которые нужно накладывать броню. Самолеты вылетали, сбрасывали бомбы, возвращались на базу — в них искали дырки от пуль и считали их количество. Многие говорили, что нужно накладывать броню туда, где больше дырок. Вальд же считал это полнейшей глупостью: мы видим только те самолеты, с которыми все в порядке — они долетели до базы, их не сбили. Значит, эти дырки вообще несущественны. Но мы не видим те самолеты, которые были подбиты, и у них, скорее всего, дырки в других местах. По отсутствию дырок он выяснил, какие части самолета наиболее чувствительны к повреждениям и какие наиболее важны.

Эта аналогия имеет большое значение в разных сферах нашей жизни. Представим, что молекула ДНК — это такой же самолет, а мутации, которые постоянно происходят в ДНК, — это дырки от пуль. Теоретически может быть поврежден любой участок. Но, если сравнивать ДНК разных людей, шимпанзе и других животных, мы выясним, что есть участки, которые накапливают повреждения чаще — это те самые места, богатые «дырками от пуль». Но есть и те места, где мутаций мы вообще не наблюдаем. Именно потому, что те организмы, у которых такая мутация возникла, погибли, не оставили потомства. Это смертельно опасные или вредные заболевания, которые вымываются из популяции через естественный отбор.

Так, сравнивая ДНК разных организмов, мы можем вычислить функциональные участки. И такой анализ говорит о том, что только 8,2% — а не 80% — это эволюционно-консервативная часть ДНК. То есть это те участки, которые неизменны и, значит, несут какую-то важную функцию. Все остальное вы можете менять и удалять.

Экспериментальная наука подтверждает теоретические предсказания насчет этого «мусора». Описан случай, когда генные инженеры удалили у мыши 1,5 миллиона нуклеотидов в одном месте и еще 0,8 миллиона в другом (для сравнения: чтобы избавить человека от гемофилии, нужно внести исправную копию гена длиной около тысячи нуклеотидов). Но даже без такого огромного куска ДНК поведение мышки не изменилось — она могла бегать и размножаться».

Зачем нужно удалять гены?

«Во-первых, такие эксперименты позволяют лучше понять, как работают гены. Чем проще модельный объект, тем легче следить, к чему приведет то или иное изменение. Во-вторых, из таких организмов можно создавать эффективных производителей биотоплива или лекарства. Чем больше у бактерии геном, тем больше энергии она тратит, чтобы этот геном производить, — получается перерасход материалов. Если же сделать бактерию очень простой, то всю энергию она будет тратить на производство только того, что вам нужно.

На самом деле удаление каких-то участков ДНК происходит и в природе — например, у паразитических организмов. Их образ жизни способствует тому, чтобы они избавлялись от многих генов, которые нужны при свободной жизни. Паразит многие вещества получает от своего хозяина, и ему не нужно их синтезировать, не нужно особенно думать, достаточно подцепить хозяина и радоваться жизни. Поэтому организмы так упрощаются в процессе эволюции, и здесь нет ничего особенного».

Мы можем сделать что-то, чего в природе не бывает?

«ДНК — это основа основ; можем ли мы ее изменить? Оказалось, что можем. Была получена ДНК с дополнительными нуклеотидами: вместо четырех (A, T, G и C — аденин, тимин, гуанин, цитозин), которые есть в каждой цепочке, их стало шесть. Два дополнительных нуклеотида называются d5SICSTP и dNaMTP. Была получена не просто ДНК в пробирке, а целая бактерия — кишечная палочка, у которой участок содержал эти «неправильные» нуклеотиды. Когда бактерия делилась и размножалась, то не теряла это свойство. Представьте, что у вас была 8-битная приставка Dendy и вы с 8-битной Dendy перешли на 32-битную Super Nintendo. Суть в том, что вы сможете закодировать намного больше информации, если у нас есть не четыре состояния в одном месте, а шесть. Пока у этого нет ровно никакого практического применения. Есть только теоретические предположения, как это может пригодиться. Но так часто бывает в фундаментальной науке.

С ДНК можно делать принципиально другие вещи. Нить ДНК — это линейная молекула для хранения информации. А давайте сделаем из нее оригами? Почему бы нет! Написаны специальные алгоритмы, которые определяют, какие фрагменты ДНК нужно синтезировать, чтобы нить ДНК склеилась в нужную вам фигурку: в человечка, смайлик, зайчика. От зайчика проку немного, но вы можете получить, например, ящичек, который будет закрываться и открываться в определенных условиях. В него вы сможете засунуть лекарство и использовать его как способ доставки лекарств к определенному типу клеток. Вводите эти ящички с лекарством человеку, они подплывают к раковой клетке, открываются, и из них вываливается лекарство, которое раковую клетку убивает».

«Есть уже готовая к реализации программа по уничтожению определенного вида комаров во Флориде, основанная на немножко другой технологии. Есть вирус Зика, если им болеет беременная женщина, у ее потомка могут быть проблемы с развитием. Вирус передается комарами при укусе. Чтобы от него избавиться, ученые создают генно-модифицированных самцов, потомство которых неспособно выживать. Но как сделать, чтобы эти самцы размножились вообще, если их потомства не остается? Эти комары-мутанты разводятся в лаборатории в воде с добавлением антибиотика, благодаря которому они выживают. После этого армии самцов из лаборатории вывозятся в окружающую среду, где антибиотика, разумеется, нет. Миллионы комаров летят искать самок — их так много, что они замещают обычных самцов. И если так делать достаточно регулярно, то можно уничтожить всю популяцию этих комаров. Недавно регуляторные организации одобрили этот план.

Конечно, есть люди, которые боятся: если вас укусит генно-модифицированный комар, вы станете бесплодными. Но этого не произойдет, во-первых, потому, что вы не комар и это так не передается, во-вторых, самцы комаров не кусаются.

Опасения есть другие: существуют зверушки, которые питаются комарами. Так вы вмешиваетесь в то, как устроена окружающая среда. Поэтому важно взвесить два варианта: либо мы живем с комарами, которые вызывают определенные дефекты у рождающихся детей, либо мы избавляемся от комаров — может быть, это вызовет какие-то последствия, хотя они могут быть и не очень существенными».

Как выглядят клоны людей?

«Классический образ клонирования: какие-то танкеры, в них в жидкости выращивают взрослых людей — так это показывают в фильмах. Я вам покажу, как выглядят реальные клоны, которые ходят среди нас. Это просто близняшки — генетически идентичные, поэтому технически они являются клонами. То есть если взять кого-то из вас и сделать маленькую копию, маленького генетически идентичного ребеночка, то он все равно будет отличаться от вас, потому что будет расти в других условиях: у него будут другие внутриутробные условия развития, поэтому даже некоторые врожденные признаки могут отличаться».

Зачем животным пересаживают человеческие гены?

«Гуманизированные животные — это те, у которых есть либо гены, либо клетки человека. С ними проводят разные эксперименты. Например, у человека есть ген, который важен для развития речи, и у мышек есть свой аналог этого гена. Ученые заменили его на человеческий вариант, и оказалось, что эти мышки стали лучше справляться с некоторыми интеллектуальными задачами.
Ученые также создают животные модели для изучения человеческих заболеваний. Так, вирус иммунодефицита человека (ВИЧ) изучать очень сложно. Для этого придумали следующее: ученые взяли гуманизированных мышей, у которых сначала выключили их собственную иммунную систему, потом пересадили предшественников клеток иммунной системы человека — и получили мышей с человеческой иммунной системой. Потом этих мышей заразили ВИЧ и изучали, что с ними происходит. Этот инструмент для исследований позволяет делать важные открытия».

Источник

Генный инженер

чем занимается генный инженер. Смотреть фото чем занимается генный инженер. Смотреть картинку чем занимается генный инженер. Картинка про чем занимается генный инженер. Фото чем занимается генный инженер

Генным инженером является ученый, который специализируется на изменении особенностей живых организмов путем выполнения манипуляций с их системой ДНК.

СОДЕРЖАНИЕ:

История профессии

В начале 50-х годов, когда мир узнал о молекулярной биологии, ученые получили отличную возможность детально изучить способы хранения и передачи наследственной информации. Это послужило стимулом развития генной инженерии. Возникла необходимость в специалистах, способных создавать новые организмы с измененной генетической структурой, усиливая либо устраняя их определенные качества.

Особенности профессии

В ходе проведения экспериментов ученый активно применяет методы молекулярной и клеточной биологии, цитологии, генетики, микробиологии и вирусологии. Бессмысленно идти в науку в расчёте на большие доходы и скорую славу.

Чтобы добиться признания, необходимо проделать колоссальный труд, демонстрируя успешные результаты экспериментов.

Обязанности

Работа генным инженером предусматривает:

Важные качества

Необходимые качества, которыми должен обладать генный инженер:

Навыки и знания

Результативная деятельность в данной области невозможна без знания ключевых технологий генной инженерии и умения правильно использовать профессиональное оборудование.

Ученому необходимо в совершенстве владеть английским языком, чтобы не испытывать сложностей при общении с иностранными коллегами и без труда читать литературу.

Перспективы и карьера

Профессия Генный инженер предусматривает широкий спектр возможности дальнейшего трудоустройства. Специалисты подобного профиля востребованы в НИИ, научных центрах и лабораториях, специализирующихся на создании лекарственных препаратов клиниках и организациях.

Что касается продвижения по карьерной лестнице, то начальной ступенькой является должность помощника лаборанта.

При наличии нужного количества практического опыта и безукоризненном выполнении своих обязанностей, специалист вправе рассчитывать на возможность проводить самостоятельные исследования. Перед ним открывается перспектива спустя некоторое время занять место старшего научного сотрудника.

При отсутствии желания заниматься научной деятельностью, есть отличный шанс создать собственное дело, выращивая трансгенные продукты и животных для дальнейшей реализации либо трудиться на должности агронома в одной из сельскохозяйственных организаций.

Обучение

Работа генным инженером возможна при наличии у претендента на вакантное место диплома о высшем образовании специальности «Генетика», «Биология» либо «Микробиология».

С целью совершенствования профессиональных навыков стоит посещать квалификационные курсы, изучать материалы передового опыта и читать специализированную литературу.

Источник

Что такое генная инженерия и зачем вмешиваться в природу организмов

чем занимается генный инженер. Смотреть фото чем занимается генный инженер. Смотреть картинку чем занимается генный инженер. Картинка про чем занимается генный инженер. Фото чем занимается генный инженер

Содержание:

Генная инженерия — это современное направление биотехнологии, объединяющее знания, приемы и методики из целого блока смежных наук — генетики, биологии, химии, вирусологии и так далее — чтобы получить новые наследственные свойства организмов.

Перестройка генотипов происходит путем внесения изменений в ДНК (макромолекулу, обеспечивающую хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов) и РНК (одну из трех основных макромолекул, содержащихся в клетках всех живых организмов).

Если внести в растение, микроорганизм, организм животного или даже человека новые гены, можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал. С этой целью сегодня генная инженерия используется во многих сферах. Например, на ее основе сформировалась отдельная отрасль фармацевтической промышленности, представляющая собой одну из современных ветвей биотехнологии.

чем занимается генный инженер. Смотреть фото чем занимается генный инженер. Смотреть картинку чем занимается генный инженер. Картинка про чем занимается генный инженер. Фото чем занимается генный инженер

История развития

Истоки

Основы классической генетики были заложены в середине XIX века благодаря экспериментам чешского-австрийского биолога Грегора Менделя. Открытые им на примере растений принципы передачи наследственных признаков от родительских организмов к их потомкам в 1865 году, к сожалению, не получили должного внимания у современников, и только в 1900 году Хуго де Фриз и другие европейские ученые независимо друг от друга «переоткрыли» законы наследственности.

Параллельно с этим шел процесс формирования знаний о ДНК. Так, в 1869 году швейцарский биолог Фридрих Мишер открыл факт существования макромолекулы, а в 1910 году американский биолог Томас Хант Морган обнаружил на основе характера наследования мутаций у дрозофил, что гены расположены линейно на хромосомах и образуют группы сцепления. В 1953 году было сделано важнейшее открытие — американец Джон Уотсон и британец Фрэнсис Крик установили молекулярную структуру ДНК.

На подъеме

К концу 1960-х годов генетика активно развивалась, а ее важными объектами стали вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов, а в 1970-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК.

Генная инженерия как отдельное направление исследовательской работы зародилась в США в 1972 году, когда в Стэнфордском университете ученые Пол Берг, Стэнли Норман Коэн, Герберт Бойер и их научная группа внедрили новый ген в бактерию кишечной палочки (E. coli), то есть создали первую рекомбинантную ДНК.

Техника ПЦР была впервые разработана в 1980-х годах американским биохимиком Кэри Маллисом. Будущий лауреат Нобелевской премии по химии (1993 года), обнаружил в специфический фермент — ДНК-полимеразу, который участвует в репликации ДНК. Этот фермент буквально считывает отрезки цепи нуклеотидов молекулы и использует их в качестве шаблона для последующего копирования генетической информации.

Новая эра

В 1996 году методом пересадки ядра соматической клетки в цитоплазму яйцеклетки на свет появилось первое клонированное млекопитающее — овца Долли. Это событие стало революционным в истории развития генной инженерии, потому что впервые стало возможным серьезно говорить о создании клонов и выращивании живых организмов на основе молекул.

Технологии генной инженерии

Генная инженерия за короткий срок оказала огромное влияние на развитие различных молекулярно-генетических методов и позволила существенно продвинуться на пути познания генетического аппарата.

Так, появилась технология CRISPR — инструмент редактирования генома. В 2014 году MIT Technology Review назвал его «самым большим биотехнологическим открытием века». Он основан на защитной системе бактерий, которые производят специальные ферменты, позволяющие им защищаться от вирусов.

«Каждый раз, когда бактерия убивает вирус, она разрезает остатки его генома, будь то ДНК или РНК, и сохраняет их внутри последовательности CRISPR, как в архив. Как только вирус атакует снова, бактерия использует информацию из «архива» и быстро производит защитные белки Cas9, в которых заключены фрагменты генома вируса. Если вдруг эти фрагменты совпадают с генетическим материалом нынешнего атакующего вируса, Cas9 как ножницами разрезает захватчика, и бактерия снова в безопасности», — поясняет Алевтина Федина, медицинский директор Checkme.

Уникальное открытие состоялось в 2011 году, когда биологи Дженнифер Дудна и Эммануэль Шарпантье обнаружили, что белок Cas9 можно обмануть. Если дать ему искусственную РНК, синтезированную в лаборатории, то он, найдя в «архиве» соответствие, нападет на нее. Таким образом, с помощью этого белка можно резать геном в нужном месте — и не просто резать, а еще и заменять другими генами.

чем занимается генный инженер. Смотреть фото чем занимается генный инженер. Смотреть картинку чем занимается генный инженер. Картинка про чем занимается генный инженер. Фото чем занимается генный инженер

Теоретически, технология CRISPR может позволить редактировать любую генетическую мутацию и излечивать заболевание, которое она вызывает. Но практические разработки CRISPR в качестве терапии еще только в начальной стадии, и многое еще непонятно.

Есть и другие методы генной инженерии, например, ZFN и TALEN.

Где и как применяется генная инженерия

Медицина

Уже сейчас активно применяется инсулин человека (хумулин), полученный посредством рекомбинантных ДНК. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. С 1982 года компании США, Японии, Великобритании и других стран производят генно-инженерный инсулин.

Кроме того, несколько сотен новых диагностических препаратов уже введены в медицинскую практику. Среди лекарств, находящихся в стадии клинического изучения, препараты, потенциально лечащие артрозы, сердечно-сосудистые заболевания, онкологию и СПИД. Среди нескольких сотен генно-инженерных компаний 60% заняты именно разработкой и производством лекарственных и диагностических средств.

«В медицине среди достижений генной инженерии сегодня можно выделить терапию рака, а также другие фармакологические новинки — исследования стволовых клеток, новые антибиотики, прицельно бьющие по бактериям, лечение сахарного диабета. Правда, пока все это на стадии исследований, но результаты многообещающие», — говорит Алевтина Федина.

Сельское хозяйство

В сельском хозяйстве одна из важнейших задач генной инженерии — получение растений и животных, устойчивых к вирусам. В настоящее время уже есть виды, способные противостоять воздействию более десятка различных вирусных инфекций.

Еще одна задача связана с защитой растений от насекомых-вредителей. Путем генетической модификации растений можно уменьшить интенсивность обработки полей пестицидами. Например, трансгенные растения картофеля и томатов стали устойчивы к колорадскому жуку, растения хлопчатника — к разным насекомым, в том числе и к хлопковой совке.

Использование генной инженерии позволило сократить применение инсектицидов (препаратов для уничтожения насекомых) на 40–60%.

Благодаря генной инженерии зерновые культуры стали более устойчивы к климатическим условиям, кроме того появилась возможность увеличить количество витаминов и полезных веществ в продукте. Например, можно обогатить рис витамином «А» и выращивать его в тех регионах, где люди имеют массовую нехватку этого элемента.

С помощью генной инженерии пытаются решить и экологические проблемы. Так, уже созданы особые сорта растений с функцией очистки почвы. Они поглощают цинк, никель, кобальт и иные опасные вещества из загрязненных промышленными отходами почв.

чем занимается генный инженер. Смотреть фото чем занимается генный инженер. Смотреть картинку чем занимается генный инженер. Картинка про чем занимается генный инженер. Фото чем занимается генный инженер

Скотоводство

В Кемеровской области работа генетиков позволила получить устойчивое к вирусу лейкоза племенное поголовье высокопродуктивных животных. Для проведения эксперимента кузбасские ученые отобрали здоровых коров черно-пестрой породы массой до 500 кг. Животным трансплантировали модифицированные эмбрионы, устойчивые к вирусу лейкоза. В середине сентября 2020 года родилось 19 телят с измененными генами.

«В месячном возрасте была проведена оценка, которая показала, что телята отличаются от своих сверстников только устойчивостью к вирусу. Пять особей отобрали для дальнейшей селекционной работы. Это позволит закрепить наследственные признаки устойчивости к вирусу лейкоза у последующих поколений», — пояснила руководитель проекта, доктор биологических наук, профессор кафедры зоотехнии Кузбасской ГСХА Татьяна Зубова.

По словам Зубовой, лейкоз крупного рогатого скота — вирусная хронически неизлечимая болезнь, при которой возникают поражение кроветворной системы и новообразования. Данное заболевание наносит значительный ущерб генофонду пород и мясной промышленности в целом, потому что мясо зараженных животных запрещено употреблять в пищу. Единственным доступным методом борьбы с лейкозом ранее было только уничтожение зараженного скота.

Этот успех позволяет говорить о том, что в дальнейшем будет возможно редактировать гены крупного рогатого скота и от других болезней.

С прицелом на человека

В 2009 году группа ученых под руководством молодого исследователя Джея Нейтца из Вашингтонского университета сумели с помощью генной терапии вернуть обезьянам способность различать оттенки зеленого и красного, которой они были лишены от рождения.

В область сетчатки глаза двух подопытных обезьян был введен безвредный вирус, несущий недостающий ген фоточувствительного рецептора. Вскоре после процедуры обе обезьяны начали различать оттенки красного и зеленого на сером фоне. Два года наблюдения не выявили у них каких-либо нарушений, поэтому ученые не исключают, что данную методику уже вскоре можно будет применять у людей, страдающих дальтонизмом.

Ученые шагнули еще дальше и уже пробуют выращивать в теле животных органы для трансплантации людям. Для минимизации риска отторжения тканей животным вводят специальные гены. Этими опытами занимается научная лаборатория Рослинского института в Великобритании, которая представила миру овцу Долли.

В 2019 году британские ученые вывели кур, яйца которых содержат два вида человеческих белков, способных противодействовать артриту и некоторым видам онкологических заболеваний. В яйцах содержится человеческий белок под названием IFNalpha2a, обладающий мощными противовирусными и противораковыми свойствами, а также человеческий и свиной вариант белка под названием макрофаг-CSF, который планируют использовать для создания препарата, стимулирующего самостоятельное заживление поврежденных тканей.

чем занимается генный инженер. Смотреть фото чем занимается генный инженер. Смотреть картинку чем занимается генный инженер. Картинка про чем занимается генный инженер. Фото чем занимается генный инженер

Изменение ДНК человека

Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы.

14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей наследственным иммунодефицитом, обусловленным мутацией в гене аденозиндезаминазы (АDA), были пересажены ее собственные лимфоциты.

Работающая копия гена ADA была введена в клетки крови с помощью модифицированного вируса, в результате чего клетки получили возможность самостоятельно производить необходимый белок. Через шесть месяцев количество белых клеток в организме девочки поднялось до нормального уровня.

После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения различных заболеваний. Уже сегодня с помощью генной терапии можно лечить диабет, анемию и некоторые виды онкологии.

Генная терапия

Генная терапия — введение, удаление или изменение генетического материала, в частности ДНК или РНК, в клетке пациента для лечения определенного заболевания.

Существует три основных стратегии использования генной терапии:

Наиболее часто применяемый метод включает вставку «терапевтического» гена для замены «ненормального» или «вызывающего болезнь».

В 2015 году впервые была проведена процедура изменения ДНК человека с целью продления молодости клеток, когда американке Элизабет Пэрриш 44 лет ввели в организм препарат, влияющий на ДНК, а в 2018 году китайский ученый Хэ Цзянькуй заявил, что с его помощью у двух детей-близнецов якобы изменены гены для выработки у них иммунитета к вирусу ВИЧ, носителем которого являлся их отец.

чем занимается генный инженер. Смотреть фото чем занимается генный инженер. Смотреть картинку чем занимается генный инженер. Картинка про чем занимается генный инженер. Фото чем занимается генный инженер

Все это, с одной стороны, выглядит грандиозно и обнадеживает, но с другой, — вызывает опасения, ведь генетические манипуляции, теоретически, возможно использовать не только в благих и мирных целях.

После эксперимента с ДНК близнецов в Китае, ЮНЕСКО выступила с инициативой о запрете изменения генов у новорожденных до того момента, пока достоверно не будет доказана безопасность таких манипуляций.

Этическая сторона вопроса

В 1997 году ЮНЕСКО выпустила Всеобщую декларацию о геноме человека и его правах, рекомендовав мораторий на генетическое вмешательство в зародышевую линию человека, а в декабре 2015 года на международном саммите по геномному редактированию человека изменение гаметоцитов и эмбрионов для генерации наследственных изменений у людей было объявлено безответственным.

Российское сообщество генетиков в большинстве своем считает, что такие эксперименты на данный момент преждевременны и требуют более глубокого исследования и обсуждений.

«Вопрос клонирования уже давно стоит на горизонте. Этично ли выращивать клонов, чтобы потом забирать их органы для трансплантации человеку… Большой вопрос. Само собой, это абсолютно нормально, что нет единой точки зрения, ведь смысл подобных дискуссий как раз в том, чтобы найти правильные формулировки и отрегулировать потенциально спасительное, но при этом очень опасное знание», — говорит Алевтина Федина.

Страх неизвестности

Вариантов развития событий в области генной инженерии существует множество, и далеко не все они изучены и, в принципе, известны. Поэтому они должны быть последовательно зафиксированы и регламентированы.

Естественно, больше всего опасений вызывают плохие сценарии развития событий. Как правило, все начинается с помощи людям и изобретения новых лекарств. Но потом человек может прийти к желанию сделать своего ребенка светловолосым и зеленоглазым или создать армию универсальных солдат, не боящихся боли и не ведающих страха.

Олег Долгицкий, социальный философ, отмечает, что современное общество настолько неоднородно в культурном и экономическом плане, что любые методы, способные существенно изменить геном, могут создать условия не только для классового, но и видового расслоения, где представители «первого мира» смогут существенно продлевать свою жизнь и не бояться никаких болезней, в отличие от менее богатых людей. Это является серьезнейшей почвой для конфликтов и столкновений.

Эксперты убеждены, что генная инженерия — это будущее медицины. Возможность избавить младенца от пожизненного гнета заболевания, излечить людей от рака, найти лекарство против ВИЧ — за всем этим будет стоять генная инженерия. При этом желание человека изменить, например, цвет глаз или предотвратить наследственное заболевание, несмотря на все риски, будет только расти. И похоже, что остановить этот процесс уже не представляется возможным.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *