чем заменить фреон 744
Хладагент R744: описание и свойства
Общее описаниеR744
Химическая формула CO2(диоксид углерода). Относится к группе ГФУ (HFC). Дешевое нетоксичное негорючее и экологически чистое (ODP = 0, GWP= 1) вещество. Стоимость диоксида углерода в 100. 120 раз ниже, чем R134a.
R744 может служить альтернативным хладагентом. Содержится в атмосфере и биосфере Земли, имеет следующие преимущества: низкая цена, простое обслуживание, совместимость с минеральными маслами, электроизоляционными и конструкционными материалами. Вместе с тем при использовании диоксида углерода требуется водяное охлаждение конденсатора холодильной машины, увеличивается металлоемкость холодильной установки (по сравнению с металлоемкостью установок, работающих на галоидопроизводных хладагентах). Высокое критическое давление имеет и положительный аспект, связанный с низкой степенью сжатия, вследствие чего эффективность компрессора становится значительной. Возможны перспективы применения диоксида углерода в низкотемпературных двухкаскадных установках и системах кондиционирования воздуха автомобилей и поездов. Его предлагают использовать также в бытовых холодильниках и тепловых насосах.
Физические свойства R744
Параметр | Значение |
---|---|
Химическая формула | CO2 |
Молярная масса, г/моль | 44.0 |
Нормальная температура кипения (p=101 кПа), o С | -93.85 |
Критическая температура, o С | 31 |
Плотность при нормальных условиях, кг/м 3 | 1.977 |
Удельная теплоемкость при 27 o С, кДж/(кг· o С) | 0.846 |
Теплота испарения, кДж/кг | 94.53 |
Потенциал разрушения озона (ODP) | 0 |
Потенциал глобального потепления (GWP) | 1 |
Применение R744
Твёрдая углекислота — сухой лёд — используется в ледниках. Жидкая углекислота используется в качестве хладагента и рабочего тела в теплоэнергетических установках (в холодильниках, морозильниках, солнечных электрогенераторах и т.д.).
Взаимозаменяемые фреоны и масла
После исследований разных, самых известных функционирующих в нашей стране хладагентов и возможности их замены, выяснилось, что к ним предъявляются разные требования. При этом у холодильных агентов-заменителей R12, R22, R502 и многих других есть уязвимые места. Чтобы не запретили использование этой продукции, важно изучить совместимость фреонов и подобрать замену r12 на r134a или других вариантов.
Осознанная эксплуатация веществ
Плюс ко всему, важно осознанно использовать альтернативные вещества при создании новой техники, а также ремонте существующего холодильного оснащения для 404 фреон, аналог которого вполне возможно найти. Поэтому следует понимать термодинамические характеристики различных компонентов, когда происходит поиск замены фреона 404 на 507.
Также следует понимать их взаимодействие с прочими изделиями, веществами в холодильном оборудовании. Необходимо принимать во внимание сведения о санитарных и гигиенических характеристиках при выборе аналога фреона r12. Такие данные о предоставляемых в продаже средствах не всегда существуют в открытом доступе, в том числе и о замене r12 на r600a. Поэтому часто нет корректной возможности отследить взаимозаменяемость фреонов.
Что нужно знать перед выбором конкретного фреона?
Чтобы оценить совместимость масел и фреонов, а также успешно внедрить новые хладагенты для поиска фреона r502 аналога, нужно:
Какие факторы учитывать при выборе замены фреона?
Перед тем, как изучить таблицу взаимозаменяемости фреонов, и выбрать подходящий вариант, нужно оценить критерии выбора нужного состава. Все критерии делятся на экологические, эксплуатационные, термодинамические, финансовые группы.
С экологической точки зрения продукт замены фреона r12 на r134 обязан обладать невысоким потенциалом глобального потепления, не быть токсичным или горючим, не влиять отрицательно на озоновый слой.
Термодинамика требует от хладагента, чтобы при атмосферном давлении у него была низкая температура, но серьезная холодпроизводительность. Важны высокие показания теплопроводности, а также низкая вязкость и плотность. Эти факторы гарантируют меньшие гидравлические потери в результате трения. Также минимизируется сопротивления в ходе перевозки продукта. Таким образом гарантируется приближенность к заменяемым хладагентам по температурным показателям, холодильному коэффициенту, давлениям. После чего приходит понимание, чем заменить 410 фреон.
Эксплуатационные группы подразумевают совместимость фреонов и масел на химическом уровне. Также требуется негорючесть, отсутствие взрывоопасность. Перед тем, как решить, чем заменить 12 фреон, подумайте, может ли он растворять воду, есть ли у него посторонний запах, какого он цвета. Плюс продукт должен быть не слишком текуч и отлично растворяться маслами, чтобы гарантировать его качественную циркуляцию. Использование продукта обязано быть достаточно технологичным. Это далеко не полный перечень критериев, которые позволяют установить, чем заменить 22 фреон или любой другой продукт.
Также важно учитывать финансовые или экономические группы. Следует оценить доступность цен и присутствие товарного производства. Тогда станет понятно, каким фреоном можно заменить 134 и станет возможна замена фреона r22 на r410.
Гидрофторуглероды ГФУ (HFC), фторуглероды ФУ (FC), углеводороды (HC)
Тема: Поговорим о СО2 (R744)
Опции темы
Поиск по теме
Отображение
Привет всем. Для каждого мастера есть своя «темная область» в знаниях, которую хотелось бы немного «осветить»)) Вот у меня появилось желание немного вникнуть в эту тему. Чета кажется что в жизни пригодится. Может есть интересная актуальная литература по теме? Или может кто на курсах каких побывал? Делитесь инфой. Где черпануть немного знаний? Вот бы в Германию рвануть на выставку через неделю.. Эмерсон там вроде как линейку выпускает на СО2 у которых расчетное давление нагнетания 135 бар и 90 на всасе. 90 бар на всасе Карл. Это что то невероятное.
а подключатся для измерений при таких давлениях это опа полная.
да многовато чет.в архиве книга «от твердой воды до жидкого гелия»,там воздух сжижали при меньших давлениях.
Ага, стальной трубкой с манометром диаметром этак 200 мм. как мне в первый день работы выдали
пункт по проверке системы на утечки порадовал 20 бар
На транскрите у нас врятли что то делать будут. СО2 жидким при 37 градусах и выше не становится. А вот каскады 134/со2 ставят, ну или любой другой верхний каскад. Там давления вполне адекватные.
При 31С критическая точка СО2. Транскритику на центральном холоде будут делать в следующем году как минимум для Метро. Скорее всего Лэнд (на следующей неделе на выставке попробую уточнить). Магнит тоже давно думает сделать гипер на СО2, в том числе и транскритический.
А всякая встройка типа кока-коловских шкафов она и есть транскритическая.
Замена хладагентов в действующем оборудовании
Развитие холодильной техники в настоящее время находится под влиянием трех определяемых экологическими проблемами взаимосвязанных факторов:
Кроме того, для осознанного применения альтернативных веществ в производстве новой техники и сервисе эксплуатируемого парка холодильного оборудования необходимо иметь достаточно большой объем информации о термодинамических свойствах этих веществ, их взаимодействии с другими материалами и веществами в холодильной машине, а также данные о санитарно-гигиенических свойствах и т.д. Эти сведения не всегда имеются для предлагаемых на рынке веществ, в том числе и отечественных.
Немаловажными факторами успешного внедрения новых хладагентов являются также наличие отечественного производства как самих веществ, так и компрессоров, предназначенных для работы на них, и возможность экспорта холодильной техники, работающей на таких веществах.
Прежде чем рассматривать свойства хладагентов, остановимся на основных требованиях, предъявляемых к ним. Требования к хладагентам подразделяются на следующие группы:
Хладагенты, отвечающие перечисленным требованиям, найти практически невозможно, поэтому в каждом отдельном случае выбирают хладагент с учетом конкретных условий работы холодильной машины, и предпочтение следует отдавать таким, которые удовлетворяют принципиальным и определяющим требованиям.
Альтернативными веществами могут быть чистые (простые) вещества и смеси. Предпочтение отдается прежде всего чистым веществам.
Обозначения хладагентов.
Стандартом допускается несколько обозначений хладагентов: условное (символическое), торговое (марка), химическое и химическая формула. Обозначения основных хладагентов даны в приложении 19.
Условное обозначение хладагентов является предпочтительным и состоит из буквы «R» или слова Refrigerant (хладагент) и комбинации цифр. Например, хладон-12 имеет обозначение R12 (CF2C12). Цифры расшифровывают в зависимости от химической формулы хладагента. Первая цифра (1) указывает на метановый ряд, следующая цифра (2) соответствует числу атомов фтора в соединении. В том случае, когда в производных метана водород вытеснен не полностью, к первой цифре добавляют количество оставшихся в соединении атомов водорода, например R22.
Изомеры производных этана имеют одну и ту же комбинацию цифр (цифровой индекс), и то, что данный изомер является полностью симметричным, отражается его цифровым индексом без каких-либо уточнений. По мере возрастания значительной асимметрии к цифровому индексу соответствующего изомера добавляют букву «а», при большей асимметрии ее заменяют буквой «b», затем «с», например R134a, R142b и т. д.
Способ цифрового обозначения непредельных углеводородов и их галогенопроизводных аналогичен рассмотренному выше, но к цифрам, расположенным после буквы «R», слева добавляют 1 для обозначения тысяч (например, R1150).
Для хладагентов на основе циклических углеводородов и их производных после буквы «R» перед цифровым индексом вставляют букву «С» (например, RC270).
Хладагентам органического происхождения присвоена серия 600, а номер каждого хладагента внутри этой серии назначают произвольно (например, метиламин имеет номер 30, следовательно, его обозначение запишется как R630).
Зеотропным, или неазеотропным, смесям присвоена серия 400 с произвольным номером для каждого хладагента внутри этой серии, например R401A.
В настоящее время появилась тенденция при обозначении хладагентов предварять цифровой индекс не буквой «R» или «Н», а аббревиатурой, указывающей непосредственно на группу, к которой относят хладагент в зависимости от степени воздействия его на окружающую среду. Например, предлагаются обозначения:
CFC12 для хладагента R12, принадлежащего к группе CFC (ХФУ), в которую входят хладагенты, вредные для окружающей среды;
HCFC125 для хладагента R125, относящегося к группе HCFC (ГХФУ), состоящей из хладагентов, менее вредных для окружающей среды;
HFC134a для хладагента R134a, входящего в группу HFC (ГФУ), состоящую из хладагентов, безвредных для окружающей среды.
Наименование
хладагента
ASHRAE
Number
Аналоги фирм DuPont,
Atofina, Solvay и др.
Заменяет
Autofrost, GHG R-12, GHG X3, R-406a
SUVA 409a, FX56, Genetron 409a, Forane FX56
SUVA HP62, FX70, Genetron 404a, Forane 404a, Solkane 404a
Klea 66, SUVA 9000, Genetron 407c, Forane 407c, Solkane 407c
SUVA 9100, AZ 20, Forane 410a, Solkane 410
R502 (Only for countries of class «5»)
SUVA 9100, FX 10, Genetron 408a, Forane FX10
SUVA 507, AZ 50, Forane 507, Solkane507
R11, R113, in blends
R11, R113, R141b, R123
R11, R113, R141b, R123
R11, R113, R141b, R123
R11, R113, R141b, R123
R11, Halon 1301, in blends
SUVA-124, Genetron-124, FE-241
R12, R114, in blends
Halon 1301, in blends
FORANE®, 134a, HFC-134a, SUVA-134a, Genetron-134a, Dymel-134a, Solkane-134a, Halocarbon-134a
R12 as propelant, in blends
Halocarbon-23, FE-13, GLC-23, Solcane-23
R11, R113, R141b, R123, in blends
Хладагенты других производителей
Номер
Торговая марка
Фирма-производитель
Состав смеси
Содержа
ние, %
Заменяемый хладагент
Большая политика и амбиции мировых монополистов во многом определяют судьбу таких на первый взгляд далеких от конечного потребителя продуктов, как хладагенты.
Казалось бы, свойства тех или иных холодильных агентов, или, как их называют по привычке, фреонов, должны интересовать только узкий круг специалистов, занимающихся холодильной техникой. С одной стороны, так и есть. Однако поистине гигантский рынок холодильного оборудования, требующий ежегодного производства около 100 тыс. тонн хладонов, приковывает к этой отрасли алчные взгляды крупнейших химических концернов, способных лоббировать свои интересы на уровне национальных правительств даже самых развитых стран. Рядовой потребитель холодильной техники вряд ли будет интересоваться химическим составом начинки своей покупки. Однако если подобная халатность и простительна для частного покупателя бытового холодильника, то для владельца торгового предприятия оборудование с «неправильным» хладоном может оказаться домокловым мечом. Все соглашаются, что холодильные агенты должны обладать высокой надежностью и холодопроизводительностью, низкой ценой, малым энергопотреблением, а также быть безопасными и соответствовать санитарным нормам. Кажется, что оценка перечисленных свойств и должна быть определяющей при выборе хладона, но не тут то было. С 1989 года основным критерием, стоящим выше и медицинских норм, и цены, стало отношение хладона к такой на первой взгляд далекой от холодильной тематики проблемы, как озоновый слой над нашей планетой.
Протоколы монреальских мудрецов
По степени озоноразрушающей активности озонового слоя Земли галоидопроизводные углеводороды разделены на 3 группы:
Хлорфторуглероды ХФУ (CFC)
Обладают высокой озоноразрушающей активностью. Хладагенты этого типа включают: R11, R12, R13, R113, R114, R115, R500, R502, R503, R12B1, R13B1.
Гидрохлорфторуглероды ГХФУ (HCFC)
Это хладагенты с низкой озоноразрушающей активностью. К ним относятся: R21, R22, R141b, R142b, R123, R124.
Гидрофторуглероды ГФУ (HFC), фторуглероды ФУ (FC), углеводороды (HC)
Не содержащие хлора хладагенты, считаются полностью озонобезопасными. Таковыми являются хладагенты R134, R134a, R152a, R143a, R125, R32, R23, R218, R116, RC318, R290, R600, R600a, R717 и др.
Особенности термодинамики смесей хладагентов. В молекулярной теории растворов различают зеотропные (неазеотропные) и азеотропные смеси.
Термодинамическое поведение смеси азеотропного состава подобно поведению чистого вещества, поскольку состав паровой и жидкой фаз у нее одинаков, а давления в точках росы и кипения совпадают.
Это необходимо учитывать при определении степени перегрева пара на входе в компрессор, а также при оценке энергетических характеристик холодильной установки.
Таким образом, температуру кипения и температуру конденсации следует находить по-другому. Температуру кипения вычисляют как среднюю температуру t0 между температурой точки росы t02 при постоянном давлении всасывания рВС и температурой, при которой хладагент поступает в испаритель t01.
Перегрев всасываемого пара вычисляют как разность температуры tBC на входе в компрессор и температуры точки росы t02 хладагента при давлении всасывания рвс. При регулировании холодопроизводительности холодильных установок с помощью регулирующих вентилей все изложенное выше необходимо учитывать.
Переохлаждение жидкости вычисляют как разность между действительной температурой жидкости и температурой точки конца конденсации tк2 при давлении нагнетания рн.
Потери давления в системе существенно увеличивают температурный глайд. Пренебрежение данным явлением при составлении теплового баланса может привести к занижению размеров теплообменных аппаратов и других элементов холодильной системы. Влияние этого фактора особенно существенно, когда холодильная система эксплуатируется на пределе своих возможностей.
Таким образом, зеотропные смеси имеют свои преимущества и недостатки. С одной стороны, изменение состава рабочего тела при циркуляции его по контуру холодильной системы может привести к возрастанию холодопроизводительности и холодильного коэффициента по сравнению с этими характеристиками для чистых хладагентов. С другой стороны, применение зеотропных смесей приводит к снижению интенсивности теплообмена в испарителе и конденсаторе.
Основные механизмы изменения состава многокомпонентного хладагента в холодильной установке следующие:
парожидкостное разделение зеотропных смесей в компрессоре и теплообменных аппаратах;
различная растворимость компонентов смеси в холодильном масле;
селективная потеря какого-либо компонента из-за утечки компонента вследствие негерметичности системы; изменения массы многокомпонентного рабочего тела в отдельных элементах холодильной системы при различных тепловых нагрузках.
При практическом использовании зеотропных смесей рекомендуется:
заправлять холодильную систему из баллона, заполненного жидким хладагентом;
смеси с отчетливо выраженным температурным «глайдом» не следует рекомендовать для применения в холодильных установках с затопленным испарителем;
учитывать неодинаковую растворимость каждого компонента смесевого хладагента в холодильных маслах;
при расчете характеристик холодильной машины следует принимать во внимание изменение состава многокомпонентного хладагента.
Традиционные хладагенты групп ХФУ и ГХФУ
По энергетической эффективности R502 и R22 достаточно близки. Холодильную установку, использующую в качестве рабочего тела R502, можно адаптировать к применению R22. Однако, как отмечалось ранее, R22 имеет более высокое давление насыщенных паров и, как следствие, более высокую температуру нагнетания.
Критическое давление, МПа
Альтернативные многокомпонентные хладагенты групп ГХФУ
Хладагент R401A(-B,-C). Это зеотропная смесь среднего давления с температурным глайдом Dtgl= 4. 5К.
В зависимости от условий эксплуатации холодопроизводительность холодильной системы, в которой ранее был R12, увеличивается на 5. 8 %. Хладагент R401 несовместим с минеральными маслами, поэтому во время ретрофита необходимо заправлять холодильный агрегат алкилбензольным маслом. Требуется также замена фильтра-осушителя.
Хладагент рекомендуется применять для ретрофита в высоко- (выше О o С) и среднетемпературных торговых холодильных установках (герметичные, бессальниковые компрессоры и компрессоры с открытым приводом), бытовых холодильниках и стационарных кондиционерах воздуха для замены R12.
Температура кипения при атмосферном давлении, o С
Критическая температура, o С
Критическое давление, кПа (абс.)
Потенциал разрушения озона ODP
Потенциал глобального потепления HGWP
Состав смеси подобран таким образом, чтобы эксплуатационные характеристики оборудования с этими хладагентами минимально отличались от показателей, достигаемых при работе с заменяемым хладагентом R12.
Хладагенты С10М1 нетоксичны, негорючи и по основным физико-химическим, термодинамическим и эксплуатационным свойствам сходны с хладагентом R12.
В качестве заменителя R12 хладагенты прошли трехлетние испытания в отечественном торговом холодильном оборудовании, в том числе в бытовых холодильниках производства заводов «Атлант», ЗИЛ и др.:
Преимущества хладагента С10М1 (АСТРОН ТМ 12) по отношению к зарубежным аналогам следующие:
транспортировать хладагент можно в контейнерах и баллонах, предназначенных для перевозки R12;
перевод холодильного оборудования с R12 на смеси С10М1 осуществляют исключительно путем замены самого хладагента без какой-либо модернизации холодильного оборудования, без внесения изменений в конструкцию холодильной машины и без замены компрессорного масла (в холодильном оборудовании, работающем на R12, используют минеральное масло ХФ12-16);
Используется в кондиционерах и тепловых насосах.
Смесь R22/R142b. Хладагент представляет собой негорючую зеотропную смесь, компоненты которой имеют ограниченный Монреальским протоколом срок применения. Результаты испытаний бытовых холодильников, заправленных смесью R22 и R142b с массовыми долями соответственно 0,6 и 0,4показали, что энергопотребление осталось практически на том же уровне, что и при использовании R12. Применение этой смеси целесообразно при ретрофите действующего холодильного оборудования; при этом не требуется замены масел, фильтров-осушителей, а также внесения изменений в конструкцию холодильного агрегата. Смесь R22 и R142b может служить переходным хладагентом не только в бытовой технике, но и в другом холодильном оборудовании.
Хладагент R408A. Разработан концерном «ElfAtochem» в качестве альтернативы R502 при ретрофите в действующих холодильных системах. Близкоазеотропная смесь, состоит из компонентов R22, R143a и R125. Состав по массе (%) соответственно 44; 4 и 52. Предназначен для применения в мобильных транспортных холодильных системах, а также в промышленных холодильных установках с поршневыми и винтовыми компрессорами. У R408A и R502 при одной и той же температуре давления близки, температура конденсации выше на 10 К. Холодопроизводительность цикла примерно на 1. 10 % выше, чем при работе на R502.
Плотность жидкости R408A ниже, чем у хладагента R502, а, следовательно, требуемая масса заправки, т. е. имеющиеся в установке ресиверы, трубопроводы и насосы, предназначенные для R502, можно использовать для R408A.
R408A более гигроскопичен, чем R502, что связано с необходимостью тщательного соблюдения правил перекачки этого хладагента, заправки систем и т. п. Теплоемкость жидкости при постоянном давлении больше у R408A, что привозит к значительным потерям при дросселировании. Этого можно избежать, увеличив переохлаждение жидкости в конденсаторе. Теплопроводность насыщенной жидкости также больше у R408A. Это повышает эффективность теплообмена, а следовательно, улучшает термодинамические характеристики установки, что и подтвердили испытания.
Потребляемая мощность при отрицательных температурах ниже на 7 %, что важно при ретрофите, так как уменьшает опасность замыкания или сгорания электродвигателя. Поэтому для применения R408A даже в малых герметичных компрессорах нет ограничений.
Из-за высокой полярности молекул одного из компонентов (R143a) хладагент R408A взаимно растворим и с алкилбензольными, и с минеральными маслами. В компактных холодильных системах при стандартных условиях этого достаточно, чтобы обеспечить возврат масла в компрессор. Хладагент R408A можно использовать также в сочетании с полиэфирными маслами.
По отношению к уплотнительным материалам R408A менее агрессивен, чем R502.
В качестве фильтров-осушителей используют молекулярные сита, применяемые для R502 и R22.
Альтернативные многокомпонентные хладагенты на основе углеводородов
Хладагент С1. В результате комплексных исследований в НИИ тепловых процессов им. В. М. Келдыша (Россия) разработан ряд многокомпонентных озонобезопасных хладагентов взамен R134a в качестве альтернативы R12. Наиболее перспективный из них хладагент С1 (азеотропная смесь R152/R600a), представляющий собой смесь углеводородов и фторуглеродов. Результаты исследований свидетельствуют о высоких теплофизических и эксплуатационных свойствах хладагентов и низком энергопотреблении холодильников, где используют эти хладагенты.
Зависимость холодопроизводительности и холодильного коэффициента от температуры кипения для С1, а также для R12 и R134a приведена на рисунке ниже. Эксперименты показали, что холодопроизводительность и холодильный коэффициент компрессоров ХКВ-6 и V1040G, заправленных смесью С1 в диапазоне температур кипения, характерных для бытовых холодильников и морозильников, соответствуют аналогичным параметрам для R12 и тем более для R134a.
Исследования, проведенные в НИИ тепловых процессов им. В. М. Келдыша, позволили сделать следующие выводы:
бытовые холодильники, заправленные хладагентом С1, работают устойчиво, их энергетические характеристики не хуже, чем при работе на R12, даже несколько превосходят их;
совместимость С1 с минеральным маслом ХФ 12-16 и конструкционными материалами позволяет максимально упростить процесс перехода с R12 на многокомпонентные хладагенты;
компоненты, входящие в С1, нетоксичны, их потенциал глобального потепления GWP низок; они освоены промышленностью развитых стран;
хладагент С1 горюч, но, как считают разработчики, необходимая доза для заправки бытовых холодильников и морозильников столь мала (28. 56 г), что даже при полной утечке С1 из агрегата его концентрация (например, в кухне объемом 20 м 3 ) будет ниже порога горючести в десятки раз.
Смесь пропан-бутан. По результатам исследований предлагается также использовать в бытовых холодильниках в качестве хладагента смесь пропан-бутан: при этом изменений в конструкцию бытового холодильника не вносят, а в качестве масла используют обычные минеральные масла, работающие с R12.
По энергетическим характеристикам теоретического холодильного цикла смесь пропан-бутан при аналогичных условиях уступает R12. Смесь пропан-бутана зеотропная.
Как было сказано ранее, такие смеси кипят при переменных температурах, но при постоянном давлении, т. е. это свойство может быть реализовано в холодильниках с двумя испарителями, когда кипение зеотропной смеси начинается в низкотемпературном отделении, а выкипание происходит в испарителе холодильной камеры при более высоких температурах.
Предлагаемая смесь пропан-изобутан (43 % R600a) горюча, но масса хладагента, находящегося в бытовом холодильнике, мала (20. 40 г). Этой смесью заправляют бытовые холодильники в Германии, широко внедряют ее в Китае и Индии. Вместе с тем американское агентство по охране окружающей среды (ЕРА) ввело правило, запрещающее использование смеси пропан-изобутан (НС-12а) в качестве альтернативы R12.
Хладагент СМ1. Этот хладагент разработан в МЭИ (состав R134a/R218/R600), представляет собой зеотропную, пожаро- и взрывобезопасную смесь, по термодинамическим характеристикам близкую к R12 и растворимую в минеральных маслах. Не требуется изменения конструкций холодильных машин, применения новых смазочных масел и переоснащения производства.
Хладагент СМ1 предлагается также использовать в торговом и промышленном холодильном оборудовании, выпускаемом в настоящее время для работы на R12, а также для ретрофита части действующего парка холодильных машин.
Примерная потребность хладагента СМ1 (в новом производстве и при ретрофите) в 2000г.:
в бытовой холодильной технике 900 т;
в торговых холодильных машинах с воздушным охлаждением конденсаторов 600 т;
в промышленных холодильных машинах с воздушным охлаждением конденсатора 500 т.
Вместе с тем при имеющейся сырьевой базе промышленное производство хладагента СМ1 пока не организовано.
Альтернативные однокомпонентные хладагенты
Хладагент R717. Химическая формула NH3 (аммиак). Относится к группе ГФУ (HFC). Из «натуральных» хладагентов R717 стоит на одном из первых мест в качестве альтернативы R22 и R502. Производство аммиака в мире достигает 120 млн. т, и лишь малая часть его (до 5%) используется в холодильной технике.
Пары аммиака легче воздуха, он хорошо растворяется в воде (один объем воды может растворить 700 объемов аммиака, что исключает замерзание влаги в системе). Минеральные масла аммиак почти не растворяет. На черные металлы, алюминий и фосфористую бронзу не действует, однако в присутствии влаги разрушает цветные металлы (цинк, медь и ее сплавы). Массовая доля влаги в аммиаке не должна превышать 0,2%.
Характеристики хладагента R717, относящегося к группе ГФУ, а также некоторых хладагентов групп ХФУ и ГХФУ на линии насыщения приведены в таблице.
Аммиак имеет чрезвычайно высокое значение теплоты парообразования, вследствие чего сравнительно мал массовый расход циркулирующего хладагента (13. 15% по сравнению с R22). Это благоприятное качество для крупных холодильных установок, но затрудняет регулировку подачи аммиака в испаритель при малых мощностях.
На аммиаке работают многие тепловые насосы. Ожидается применение аммиака в малых холодильных машинах для коммерческих установок.
Используемые в настоящее время масла не растворяются в аммиаке, поэтому в схему холодильной машины приходится включать маслоотделители, что увеличивает ее стоимость. В последние годы ведутся интенсивные исследования по разработке растворимого в аммиаке масла и созданию холодильного оборудования с «сухим» испарителем. Растворимость масла в аммиаке исключает образование пленки масла на теплообменных поверхностях, что повышает коэффициент теплоотдачи с 2700 до 9100 Вт/(м 2 *К).
Достигнутый в последние годы прогресс в разработке растворимых в аммиаке R717 холодильных масел может кардинально изменить тенденции в развитии холодильного машиностроения.
Хладагент R744. Химическая формула СО2 (диоксид углерода). Относится к группе ГФУ (HFC). Дешевое нетоксичное негорючее и экологически чистое (ODP = 0, GWP= 1) вещество. Стоимость диоксида углерода в 100. 120 раз ниже, чем R134a.
Диоксид углерода имеет низкую критическую температуру (31 o С), сравнительно высокую температуру тройной точки (-56 o С), большие давления в тройной точке (более 0,5 МПа) и критическое (7,39 МПа). Может служить альтернативным хладагентом. Содержится в атмосфере и биосфере Земли, имеет следующие преимущества: низкая цена, простое обслуживание, совместимость с минеральными маслами, электроизоляционными и конструкционными материалами. Вместе с тем при использовании диоксида углерода требуется водяное охлаждение конденсатора холодильной машины, увеличивается металлоемкость холодильной установки (по сравнению с металлоемкостью установок, работающих на галоидопроизводных хладагентах). Высокое критическое давление имеет и положительный аспект, связанный с низкой степенью сжатия, вследствие чего эффективность компрессора становится значительной. Возможны перспективы применения диоксида углерода в низкотемпературных двухкаскадных установках и системах кондиционирования воздуха автомобилей и поездов. Его предлагают использовать также в бытовых холодильниках и тепловых насосах.
В связи с открытием в России значительных запасов (около 340 млрд м 3 ) подземных газов с высоким содержанием азота себестоимость природного азота становится на порядок ниже, чем азота, полученного методом сжижения и разделения воздуха, что позволит применять в промышленных масштабах безмашинный способ охлаждения в аппаратах для быстрого замораживания пищевых продуктов. Для повышения степени использования низкотемпературного потенциала газообразного азота специалистами МГУПБ предложена система мобильного хладоснабжения.
В промышленных холодильных установках пропан используют уже в течение многих лет. В последние годы все чаще предлагается применять пропан в холодильных транспортных установках.
В Германии в 1994 г. было произведено более 1000 бытовых холодильников на пропане, изобутане или их смесях. Подобные холодильники изготовляют в Китае, Бразилии, Аргентине, Индии, Турции и Чили. По оценкам создателей этой техники, холодильный коэффициент при использовании углеводородов практически такой же (+(-)1%), как при работе на R12. Требуются только небольшие изменения в конструкции компрессора. Применяются те же минеральные масла, та же электроизоляция, те же уплотняющие материалы, трубы того же диаметра, практически не изменяется процедура сервисного обслуживания. Температура нагнетания становится ниже, чем при работе на R22 или R502. Пропан можно сразу заправить в систему, где до этого был озоноопасный хладагент. Как показали исследования, в этом случае теряется до 10% холодопроизводительности, если в системе ранее был R22, и 15%, если R502. Ряд специалистов считают, что и этого снижения можно было бы избежать, добавив к пропану полипропилен.
В США же запрещено использовать углеводороды в бытовых холодильниках. Агентство США по охране окружающей среды прогнозирует в случае их применения до 30 000 пожаров в год.
В Новой Зеландии углеводороды разрешено использовать в торговом холодильном оборудовании.
При размещении торгового холодильного оборудования, работающего на пропане, в общедоступных помещениях необходимо соблюдать правила безопасности. В случае превышения указанных норм заправки (более 2,5 кг R290) холодильное оборудование следует устанавливать в отдельном, специально оборудованном помещении, что увеличивает капитальные затраты. Пропан применяют и в тепловых насосах. В системе теплового насоса масса пропана чуть больше 1 кг, оборудование находится в отдельном здании. По мнению специалистов, контроль за пожароопасностью возможен.
В настоящее время итальянские и немецкие фирмы применяют R600a в бытовой холодильной технике. В частности, фирмы «Necci compressori» и «Zanussi» международного концерна Electrolux compressors» выпускают компрессоры, работающие на изобутане. Холодильные агрегаты с R600a характеризуются меньшим уровнем шума из-за низкого давления в рабочем контуре хладагента.
Использование изобутана в существующем холодильном оборудовании связано с необходимостью замены компрессоров на компрессоры большей производительности, так как по удельной объемной холодопроизводительности R600a значительно проигрывает хладагенту R12 (практически в два раза).
Вместе с тем R125 имеет более низкую (по сравнению с R22 и R502) температуру нагнетания и высокий массовый расход при низких давлениях всасывания. Поршневые холодильные компрессоры, работающие на R125, характеризуются оптимальным наполнением цилиндра, а следовательно, имеют большой коэффициент подачи.
Хладагент R134a. Химическая формула CF3CFH2 (тетрафторэтан). Молекула R134a имеет меньшие размеры, чем молекула R12, что делает более значительной опасность утечек. Относится к группе ГФУ (HFC). Потенциал разрушения озона ODP = 0, потенциал глобального потепления GWP = 1300. Хладагент R134a нетоксичен и не воспламеняется во всем диапазоне температур эксплуатации. Однако при попадании воздуха в систему и сжатии могут образовываться горючие смеси. Не следует смешивать R134a с R12, так как образуется азеотропная смесь высокого давления с массовыми долями компонентов 50 и 50%. Давление насыщенного пара этого хладагента несколько выше, чем у R12 (соответственно 1,16 и 1,08 МПа при 45 o С). Пар R134a разлагается под влиянием пламени с образованием отравляющих и раздражающих соединений, таких, как фторводород.
Для R134a характерны небольшая температура нагнетания (она в среднем на 8. 10 o С ниже, чем для R12) и невысокие значения давления насыщенных паров.
В среднетемпературных холодильных установках и системах кондиционирования воздуха холодильный коэффициент R134a равен коэффициенту для R12 или выше его.
В высокотемпературных холодильных установках удельная объемная холодопроизводительность при работе на R134a также несколько выше (на 6% при t0 = 10 o С), чем у R12. Диапазоны применения хладагента R134a приведены на рис., а зависимость холодопроизводительности и холодильного коэффициента от температуры кипения показана далее на рисунке.
Из-за значительного потенциала глобального потепления GWP рекомендуется применять R134a в герметичных холодильных системах. Влияние R134a на парниковый эффект в 1300 раз сильнее, чем у СО2. Так, выброс в атмосферу одной заправки R134a из бытового холодильника (около 140 г) соответствует выбросу 170 кг СО2. В Европе в среднем 448 г СО2 образуется при производстве 1 кВт*ч энергии, т.е. этот выброс соответствует производству 350 кВт*ч энергии.
Для работы с хладагентом R134a рекомендуются только полиэфирные холодильные масла, которые характеризуются повышенной гигроскопичностью.
R134a широко используют во всем мире в качестве основной замены R12 для холодильного оборудования, работающего в среднетемпературном диапазоне. Его применяют в автомобильных кондиционерах, бытовых холодильниках, торговом холодильном среднетемпературном оборудовании, промышленных установках, системах кондиционирования воздуха в зданиях и промышленных помещениях, а также на холодильном транспорте. Хладагент можно использовать и для ретрофита оборудования, работающего при более низких температурах. Однако в этом случае, если не заменить компрессор, то холодильная система будет иметь пониженную холодопроизводительность.
R134a совместим с рядом уплотняющих материалов. Как показал анализ, проведенный фирмой «Du Pont», изменение массы и линейное набухание таких материалов, применяемых в отечественном холодильном оборудовании, как фенопластовые и полиамидные колодки, текстолит, паронит и полиэтилентерефталатовые пленки, при старении в смеси SUVA R134a с полиэфирным маслом «Castrol SW100» при 100 o С в течение 2 недель были незначительными.
Анализ зарубежных публикаций и результаты исследований отечественных специалистов свидетельствуют о том, что замена R12 на R134a, имеющий высокий потенциал глобального потепления GWP, в холодильных компрессорах сопряжена с решением ряда технических задач, основные из которых:
улучшение объемных и энергетических характеристик герметичных компрессоров;
увеличение химической стойкости эмаль-проводов электродвигателя герметичного компрессора;
Все это должно привести к значительному увеличению стоимости холодильного оборудования. Вместе с тем в водоохладительных установках с винтовыми и центробежными компрессорами применение R134a имеет определенные перспективы.
Хладагент R143a. Химическая формула CF3-СН3 (трифтор-этан). Относится к группе ГФУ (HFC).
R143a имеет потенциал разрушения озона ODP = 0 и сравнительно высокий потенциал глобального потепления GWP = 1000, нетоксичен и пожароопасен, не взаимодействует с конструкционными и прокладочными материалами. Наличие трех атомов водорода в молекуле R143a способствует хорошей растворимости в минеральных маслах. Температура нагнетания ниже, чем у R12, R22 и R502. Как показал эксергетический анализ, энергетическая эффективность двухступенчатого цикла с R143a близка к эффективности цикла с R502, ниже, чем у R22, и выше, чем у R125. Хладагент R143a входит в состав многокомпонентных альтернативных смесей, предлагаемых для замены R12, R22 и R502.
Хладагент R32. Химическая формула CF2H2 (дифторметан). Относится к группе ГФУ (HFC). R32 имеет потенциал разрушения озона ODP = 0 и низкий по сравнению с R125 и R143a потенциал парникового эффекта GWP = 220. Нетоксичен, пожароопасен. Имеет большую удельную теплоту парообразования 20,37 кДж/моль при нормальной температуре кипения и крутую зависимость давления насыщенных паров от температуры, вследствие чего для R32 характерна высокая температура нагнетания, самая высокая из всех альтернативных хладагентов, за исключением аммиака. R32 растворим в полиэфирных маслах.
Для R32 при использовании его в холодильных установках характерны высокие холодопроизводительность и энергетическая эффективность, но он несколько уступает R22 и R717. Высокая степень сжатия R32 вызывает необходимость в значительном изменении конструкции холодильной установки при ретрофите и, следовательно, приводит к увеличению ее металлоемкости и стоимости. Поэтому R32 рекомендуется использовать в основном в качестве компонента альтернативных рабочих смесей. Вследствие малых размеров молекулы R32 по сравнению с молекулами хладагентов этанового ряда возможна селективная утечка R32 через неплотности в холодильной системе, что может изменить состав многокомпонентной рабочей смеси.
Другие малоиспользуемые хладаагенты