чем заканчивается период дробления
Эмбриональное развитие
От момента образования зиготы и до выхода зародыша из яйцевых оболочек длится эмбриональный период развития.
Дробление зиготы
Важная особенность дробления в том, что не происходит увеличение в размере зародыша: клетки дробятся (делятся) настолько быстро, что не успевают накопить цитоплазматическую массу. Дробление зиготы человека является полным неравномерным асинхронным.
Бластуляция
Гаструляция (греч. gaster — желудок, чрево)
Гаструляцией называют стадию эмбрионального развития, в ходе которой клетки, возникшие в результате дробления зиготы, формируют три зародышевых листка: эктодерму, мезодерму и энтодерму.
У первичноротых животных на месте первичного рта (бластопора) образуется ротовое отверстие. К первичноротым относятся: кишечнополостные, плоские, круглые и кольчатые черви, моллюски, членистоногие.
У вторичноротых на месте бластопора формируется анальное отверстие, а ротовое отверстие образуется на противоположном полюсе. К вторичноротым относят хордовых и иглокожих (морских звезд, морских ежей).
Нейрула
Эта стадия следует за гаструлой. Ранняя нейрула представляет собой трехслойный зародыш, состоящий из энто-, экто- и мезодермы. На этапе нейрулы происходит закладка отдельных органов.
Все три зародышевых листка требуют нашего особого внимания, а также понимания того, какие органы и структуры из них образуются.
Из зародышевых листков образуются ткани, органы и системы органов. Такой процесс называется органогенезом. В период закладки органов важное значение имеет воздержание матери от вредных привычек (алкоголь, курение), которые могут нарушить процесс дифференцировки клеток и привести к тяжелейшим аномалиям, уродствам плода.
Некоторые лекарства также могут оказывать на плод тератогенный эффект (греч. τέρας — чудовище, урод), приводя к развитию уродств. Периоды закладки органов и система органов вследствие их большой важности носят название критических периодов эмбриогенеза.
Анамнии и амниоты
К анамниям относятся рыбы, земноводные.
Зародышевый орган, аллантоис, является органом дыхания и выделения.
За счет особых оболочек, развивающихся в ходе эмбрионального развития, амниона и серозы, у амниот формируется амниотическая полость. В ней находится зародыш, окруженный околоплодными водами. Благодаря такому гениальному устройству, амниотам для размножения и развития более не нужно постоянное нахождение в водоеме, они «обрели независимость» от него.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Чем заканчивается период дробления
Дробление представляет собой серию митотических делений зиготы с образованием многих дочерних клеток (бластомеров) меньшего размера. Митотические деления зиготы, а в последующем — бластомеров происходят с увеличением числа клеток, но без увеличения их массы, поэтому именуются дроблением.
У человека дробление не имеет принципиальных отличий от такового у других представителей позвоночных, однако протекает гораздо медленнее. Дробление полное, или голобла-стическое (борозды дробления проходят через весь зародыш), неравномерное (в результате дробления образуются дочерние клетки — бластомеры неравной величины) и асинхронное (разные бластомеры дробятся с различной скоростью, поэтому зародыш на отдельных стадиях дробления содержит нечетное число клеток).
Первое деление дробления продолжается в среднем около 30 часов, последующие — более кратковременны (около 20-24 часов). В процессе дробления зародыш перемещается по маточной трубе и на 6-е сутки развития попадает в полость матки.
Бластомеры первой генерации у человека, как и зигота, тотипотентны (каждый бластомер способен развиться в полноценный организм). До стадии 8 бластомеров клетки зародыша формируют рыхлую неоформленную группу, и только после третьего деления устанавливают между собой плотные контакты, образуя компактный клеточный шар из 16 бластомеров, именуемый морулой. Компактизация создает условия для развития наружной клеточной массы и внутренней клеточной массы.
Последняя — это материал будущего тела зародыша (эмбриобласта) и внезародышевых органов. Бластомеры наружной клеточной массы — мелкие и многочисленные (их примерно в 10 раз больше, чем клеток внутренней клеточной массы), являются источником развития трофобласта.
Когда морула попадает в проксимальный отдел маточной трубы и далее — в полость матки, через ее прозрачную зону начинает проникать содержащаяся в маточной трубе и матке жидкость. Происходит кавитация морулы. Сначала жидкость накапливается между клетками и образует небольшие промежутки, которые затем сливаются в единую полость внутри морулы (бластоцель). В образовании жидкости и кавитации участвуют также клетки трофобласта, секретирующие жидкость.
С момента появления полости зародыш именуется бластоцистой. Клетки внутренней клеточной массы бластоцисты локализованы на одном из полюсов и обращены в полость. Клетки наружной клеточной массы уплощаются и, ограничивая полость, формируют оболочку бластоцисты — трофобласт. В период перемещения дробящегося зародыша по маточной трубе большое значение имеет тот факт, что сохраняющаяся прозрачная зона предотвращает прилипание бластоцисты к стенкам трубы и зародыш попадает в полость матки. Здесь он освобождается от прозрачной зоны и начинает имплантироваться (погружаться) в слизистую оболочку матки. Имплантация зародыша протекает параллельно с гаструляцией.
Введение в медицину репродукции. Зачатие у человека. Дробление. Развитие зародыша в период прогестации.
До недавнего времени о первой неделе развития зародыша человека было известно очень мало, так как находки оплодотворенных яиц в женских половых путях были случайны и чрезвычайно редки. Самая богатая коллекция гистологических препаратов зародышей человека ранних стадий развития принадлежи кафедре эмбриологии Института им. Карнеги в Вашингтоне. Она включает более 600 препаратов, явившихся предметом систематического обзора R.O’Rahilly (85). Классификация “Карнеги” в настоящее время принята во всем мире подавляющим большинством авторов, занимающихся ранними этапами развития человека:
Только многолетний труд Роберта Эдвардса позволил выработать методы выращивания зародышей человека до стадии бластоцисты in vitro и более углубленное изучение процессов раннего эмбриогенеза.
Оплодотворение происходит, как правило, в ампуле маточной трубы. Дробящийся зародышдвижется по трубе в полость матки. Важную роль в этом транспорте играют ампулярно-перешеечное соединение и перешеек, обладающие хорошо развитой мускулатурой и ресничками. Ампулярно-перешеечное соединение может быть местом нахождения водителя ритма трубы (34).
Движение зародыша, окруженного клетками яйценосного бугорка и лучистого венца, в ампуле сопровождается его неполным вращением. В месте маточно-трубного соединения уже была обнаружена сфинктерная активность. В маточной трубе женщины зародыш может находиться до четырех дней. 72 часа зародыши находятся в ампуле, включая время прохождения ампулярно-перешеечного соединения (30 часов), и затем быстро проходят через перешеек в полость матки.
3-я стадия характеризуется превращением морулы в зародышевый пузырек, или бластоцисту, путем образования полости, бластоцеле.
После стадии 4-х-8-ми бластомеров зародыш претерпевает важные изменения, называемые компакцией. До стадии 4-8 бластомеров индивилуальные бластомеры отличаются друг от друга. Компакция характеризуется изменением структуры и свойств цитоплазматических мембран. Отдельные бластомеры становятся неотличимы друг от друга, и упаковка их становится очень компактной (отсюда и название процесса). Эти изменения в цитоструктуре совпадают со значительными изменениями в ультраструктуре цитоплазмы и цитоплазматических органелл. Компакция приводит к образованию наружного слоя клеток, будущей трофэктодермы. На этой стадии между бластомерами появляются плотные соединения, десмосомы.
Морулы человека и одна бластоциста были вымыты из полости матки приблизительно через 5 дней после овуляции. Бластоциста была окружена прозрачной оболочкой, состояла из 180-ти клеток и имела строение, типичное для бластоцист других видов (22). В отличие от некоторых других видов (кролик, свинья), в преимплантационном периоде бластоциста человека не претерпевает значительного увеличения в размерах (экспансии). При выращивании бластоцист человека в культуре было установлено, что они обладают четко выраженной внутренней клеточной массой и большой полостью, возникающей после появления скопления больших клеток на одном полюсе морулы.
Развитие зародыша контролируют некие внутренние часы. Характер этой регуляции пока не известен. Скорее всего, она не связана непосредственно с хронологическим возрастом и, по-видимому, определяется, в первую очередь, числом ядерных или цитоплазматических делений.
Ранние стадии развития зародышей млекопитающих в определенной степени резистентны к действию различных тератогенов (ионизирующая радиация, лекарственные препараты, алкоголь) (34). Это обусловлено, скорее всего, отсутствием в это время значительных клеточных миграций и сходными метаболическими потребностями бластомеров (34).
Отдельные бластомеры различимы до 8-клеточной стадии. Компакция начинается с 1б-клеточной стадии. По данным изучения развития зародышей человека в культуре хронология развития их может быть представлена следующей таблицей:
Стадия | 1 | 2 |
---|---|---|
2 бластомера | 34.9 ± 1.9 | 46 |
4 бластомера | 51.2 ± 1.9 | 63 |
8 бластомеров | 67.9 ± 2.5 | 86 |
16 бластомеров | 84.6 ± 3.4 | 112 |
Морула | 100.2 ± 3.0 | 120 |
Ранняя бластоциста | 112.7 ± 3.8 | 132 |
Время от оплодотворения до достижения стадии развития (часы)
1: расчетное среднее время стадии дробления ± стандартная ошибка;
2: Верхняя 95%-ная точка (время от оплодотворения, когда 95% зародышей достигают данной стадии) (34)
Для переноса зародышей в полость матки после оплодотворения вне организма наиболее пригодны 16-клеточные зародыши (34).
Жидкость бластоцеле частично изолирована от окружающей среды и образуется, вероятно, за счет активного транспорта таких ионов, как ионы натрия, хлора и бикарбоната, что сопровождается движением в бластоцеле воды и углекислого газа. Белки могут пересекать трофобласт и входить в бластоцеле, но механизмы этого транспорта еще требуют окончательного выяснения.
Дифференцировка зародыша млекопитающих сопровождается значительными изменениями его ультраструктуры, причем многие изменения цитоплазмы и органелл отражают растущую сложность обмена веществ зародыша. Некоторые цитоплазматические структуры унаследованы от яйцеклетки и представляют собой запасы РНК и белков матери, но они быстро исчезают во время дробления. В бластомерах имеется много вирусоподобных частиц, но об их значении для раннего развития можно только догадываться. В свойствах клеточной поверхности, особенно клеточной поверхности трофобласта, происходят локальные изменения, которые, должно быть, связаны со все более сложными функциями мембранного транспорта и ответа морулы и бластоцисты на внешние факторы.
Ультраструктура бластомеров тесно связана с изменениями их метаболизма в течение дробления. Исследование дробящихся зародышей с помощью трансмиссионной электронной микроскопии выяснило природу важных изменений в структуре цитоплазмы и органелл во время начальных стадий роста. Относительно простая структура бластомеров периода раннего дробления сменяется развитием эндоплазматической сети, появлением многочисленных рибосом и изменениями митохондрий. Эти изменения указывают на то, что у морул и бластоцист, или даже раньше, начался активный синтез белка. Типичные цистерны шероховатой эндоплазматической сети, скудные во время раннего дробления, становятся выраженными после 8-клеточной стадии. Они формируются вблизи наружной ядерной мембраны одновременно с уменьшением количества гладкой эндоплазматической сети. Видимо, эти изменения также связаны с усилением синтеза белка.
Характерные изменения были обнаружены и в других органеллах. Ядрышки из округлых образований с плотной волокнистой структурой в течение раннего развития становятся более вакуолизированными и зернистыми. Эти изменения совпадают с увеличением числа рибосом и полирибосом и связаны, по-видимому, с синтезом рРНК. В течение дробления значительные изменения демонстрируют и митохондрии. Их морфология постоянна до 4-клеточной стадии, а затем резко меняется. У одноклеточных зигот они маленькие, электронноплотные и сферические и имеют мало крист. В течение дробления митохондрии удлиняются, в них появляется большое количество пластинчатых крист, которые могут быть растянуты и вакуолизированы. Есть указания, что у некоторых видов в клетках трофобласта и внутренней клеточной массы могут быть разные кристы. Митохондрии являются источником АТФ, кругооборот которого в период дробления очень высок.
В течение преимплантационного периода развития в клетках зародыша были обнаружены различные включения. В оплодотворенных яйцеклетках некоторых видов, как то: мышь и крыса, были обнаружены решеткоподобные структуры, отсутствующие в зародышах человека и кролика. В клетках зародышей могут быть цепочки рибосом, унаследованные от матери и используемые для поддержания белкового синтеза в течение короткого периода времени после оплодотворения, пока зародыш не сможет приступить к синтезу собственных белков. В бластомерах ранних зародышей некоторых видов были обнаружены кристаллические образования, и, если они связаны с эндоплазматической сетью, что характерно для определенных видов, то число и размеры их увеличиваются после раннего дробления. Иногда такие образования достигают очень больших размеров, например, в трофобласте кролика, при этом сходные структуры имеются и в эндометрии. Не исключено, что это материнские белки, переходящие из эндометрия в зародыш.
В зародышах и в клетках репродуктивного тракта млекопитающих, также как и во многих других типах соматических клеток, были обнаружены вирусоподобные частицы. Эти частицы похожи на опухолевые РНК вирусы, так как диаметр их около 50-100 нм, и они окружены электронно-плотными капсулами. В соматических клетках они подразделяются на три типа: тип A обнаруживается в цитоплазме или в цистернах эндоплазматической сети; тип B очень напоминает тип A, но имеет несколько отличную структуру; тип C располагается экстрацеллюлярно, например, мышиный вирус типа C. Вирусы могут наследоваться от матери путем прямой передачи и при трубных или маточных инфекциях, и такая форма наследования обычно называется вертикальной передачей. Некоторые опухолевые РНК вирусы являются эндогенными, представлены в половых и соматических клетках и передаются генетически по менделевскому типу. Вирусы, передающиеся при инфекциях, колонизируют все зародыши и не проявляют сходного менделевского распределения.
Вирусоподобные частицы были обнаружены при электронной микроскопии в зародышах, выделенных из маточной трубы, и, очевидно, латентная вирусная инфекция раннего зародыша широко распространена у млекопитающих. Геном мыши содержит много связанных с вирусами генов, которые на определенных этапах развития могут дать начало вирусным частицам. В дробящихся зародышах мыши было обнаружено четыре морфологически различных типа частиц, три из которых напоминают известные опухолевые РНК-вирусы.
Частицы типа А в течение короткого времени представлены в яйцеклетке, исчезают при оплодотворении и вновь на короткое время появляются в дробящемся зародыше, а именно, во внеклеточном пространстве, в цистернах и эндоплазматической сети бластомеров после двуклеточной стадии. Их появление совпадает, вероятно, с синтезом рибосомной РНК зародышей. РНК-вирусы типа С были обнаружены в зародышах кролика и бабуина. Они, очевидно, отпочковываются от плазматических мембран зародыша. Кроме того, они были обнаружены в клетках плацентарных мембран человека. Зародыши могут быть искусственно инфицированы обезьяним вирусом 40, вирусом полиомы и вирусом ньюкастлской болезни, причем после заражения были обнаружены различные цитоплазматические эффекты и уменьшение процента имплантации. Некоторые вирусные белки иммуногистологически были обнаружены в яйцеклетках и в дробящихся зародышах, что говорит о том, что вирусы активно участвуют в репликации и делении. Однако существует некоторое несогласие в отношении того, являются ли ультраструктурные образы вирусоподобных частиц прямым указанием на инфекцию и репликацию вирусов в зародышевых клетках. ДНК-вирусы также могут участвовать в репродукции, например вирус герпеса типа 2.
Изменения в структуре поверхности зародышей были выявлены также и при сканирующей электронной микроскопии. Так, при овуляции уменьшаются микроворсинки и складки мембраны яйцеклеток. Конические отростки и короткие микроворсинки, имеющиеся у одноклеточного зародыша млекопитающих, увеличиваются в числе и размерах к двуклеточной стадии, а на четырехклеточной стадии на поверхности отдельных клеток появляются углубления. В ходе дальнейшего дробления углубления постепенно исчезают, зато микроворсинки становятся более многочисленными, и одновременно с этим плотность поверхности зародыша значительно увеличивается, особенно на стадии бластоцисты, за счет образования тонких складок мембраны. Микроворсинки, расположенные в основании бластомеров, могут способствовать сближению соседних клеток при образовании морулы.
Интрацеллюлярные соединения и соединительные комплексы между бластомерами образуются в период дробления. Эти соединения устанавливают структуру бластоцисты и, возможно, определяют также специфическую позицию клеток во время дробления. Первичный контакт между клетками, видимо, обеспечивается микроворсинками, и, вероятно, этого достаточно для поддержания контакта в начальном периоде дробления. Соседние клетки соединены за счет интердигитаций микроворсинок, которые на этой стадии перераспределяются на эмбриональной поверхности. Микроворсинки сохраняются на наружной поверхности бластомеров и в базальной области контакта между соседними клетками, а в апикальной зоне контакта между клетками количество их становится ограниченным. Микроворсинки, сохраняющиеся в базальной зоне контакта, обеспечивая соединение соседних клеток, могут на большую глубину проникать в зону соседних клеток.
Фундаментальные изменения происходят во время компакции, когда в апикальной зоне контакта между соседними клетками образуются плотные соединения (десмосомы) и «гэп»-соединения (соединения «в виде ущелья»). Эти изменения начинаются более плотным соприкосновением мембран и уплотнением клеток в местах их начального слияния. Процессы эти кальций-зависимы. Фокусы тесного соприкосновения клеток, характеризующиеся к тому же плотным подлежащим материалом, предшествуют образованию десмосом вблизи наружной поверхности трофобластных клеток, при этом в апикальной области соседних клеток образуются соответствующие друг другу выступы и углубления.
Таким образом, наружная поверхность трофобласта образует значительный барьер проницаемости, ограничивающий свободное поступление различных веществ в зародыш, в то время как более базально расположенные соседние клетки разделяются ущельем шириной 4,0 нм и трофобласт проницаем для таких молекул как лантан. Во внутренних клетках эти изменения выражены не в такой значительной степени. Таким образом, компакция приводит к образованию в зародыше наружных и внутренних клеток, при этом внутренние клетки заключены в оболочку из наружных клеток, и это является первым указанием на то, что теперь в зародыше существует два типа клеток. Позднее наружные клетки образуют трофэктодерму бластоцисты и, возможно, внесут вклад и в некоторые другие закладки. Внутренние клетки, обнаруживаемые у мыши после восьмиклеточной стадии, дадут начало фетальньм компонентам.
Компакция включает в себя и другие значительные изменения в ультраструктуре слоя трофобластных клеток. В корковой зоне бластомеров происходит перераспределение клеточного скелета, выражающееся в том, что в точках контакта параллельно мембране располагается микротрубочки. Их функцией может быть стабилизация и укрепление мембраны. Образование микротрубочек является необходимым компонентом компакции. АТФ для покрытия энергетических потребностей трофобластных клеток поставляют, вероятно, митохондрии, перераспределяющиеся в корковую зону бластомеров. Кроме того, при образовании плотных соединений были обнаружены модификации мембран. Типичные решетки и полоски на поверхности внутренней мембраны (поверхность А) и соответствующие им бороздки наружной мембраны (поверхность В) были обнаружены в замороженных препаратах, «гэп»-соединения располагались базальнее плотных соединений. Трейсерные субстанции проникают в бластоцеле через трофобластные клетки и через «гэп»-соединения, но не через плотные соединения.
После появления десмосом на четырехклеточной стадии вклад в структуру зародыша постоянно повышается. В бластоцисте десмосомы между соседними клетками трофобласта очень сложны, связаны с микрофилламентами и поддерживают структуру зародыша. Они очерчивают будущую трофэктодерму, ткань, обладающую многими свойствами секреторного эпителия, электрическое сопротивление которой постоянно повышается. (Раздел по ультраструктуре зародыша написан по книге Edwards (34)).
Процесс формирования нервной трубки и пороки развития
Процесс формирования нервной трубки называется нейруляцией. Нейруляция начинается с появления нервной пластинки, которая инвагинирует внутрь позвоночника, чтобы сформировать нейронную сеть с нервными канавками по обеим сторонам позвоночника. Постепенно, нейронные канавки сближаются друг с другом по средней линии позвоночника и сливаются, таким образом преобразовывая нейронные канавки в нервную трубку.
При нарушении нейруляции на этапах смыкания нервной трубки обнаруживаются врожденные пороки развития, такие как:
и другие дефекты центральной нервной системы. Дефекты закрытия нервной трубки встречаются довольно редко. При серьёзных дефектах развития невральной трубки, таких как анэнцефалия, расщепление позвоночника плод погибает в утробе матери или рождается нежизнеспособным и погибает в ближайшие дни после рождения. Современное оборудование помогает обнаружить пороки развития нервной трубки на регулярных обследованиях во время беременности. При ранней диагностике пороков развития нервной трубки показано прерывание беременности.
Формирование нервной трубки человека это сложное взаимодействие между генетическими и экологическими факторами. Некоторые гены имеют важное значение для формирования нервной трубки, но пищевые факторы, такие как уровень холестерина и фолиевой кислоты, также важны для правильного формирования нервной трубки. Учеными было подсчитано, что 50% дефектов закрытия нервной трубки у плода, можно предотвратить назначив беременной женщине препараты фолиевой кислоты и витамина B 12.
ВОЗ рекомендует всем женщинам на этапе планирования беременности, а так же беременным, принимать 400 мкг фолиевой кислоты ежедневно, чтобы уменьшить риск пороков развития нервной трубки.
Вся информация носит ознакомительный характер. Если у вас возникли проблемы со здоровьем, то необходима консультация специалиста.