чем вызван оптический сдвиг изображения
сдвиг изображения
38 сдвиг изображения (фотограмметрия)
Смещение оптического изображения при формировании его в плоскости фотограмметрического снимка за время полной выдержки, вызванное поступательным или угловым перемещением съемочной камеры или объекта фотограмметрической съемки
Смотреть что такое «сдвиг изображения» в других словарях:
сдвиг изображения (фотограмметрия) — Смещение оптического изображения при формировании его в плоскости фотограмметрического снимка за время полной выдержки, вызванное поступательным или угловым перемещением съемочной камеры или объекта фотограмметрической съемки. [ГОСТ Р 51833 2001] … Справочник технического переводчика
сдвиг — а; м. 1) к сдвинуть 1) сдвигать и сдвинуться сдвигаться 1) Сдвиг изображения на экране телевизора. 2) Заметное изменение (обычно улучшение) в состоянии, развитии чего л. Сдвиг в работе … Словарь многих выражений
сдвиг — а, м. 1. Действие по глаг. сдвинуть сдвигать (в 1 знач.) и по глаг. сдвинуться сдвигаться (в 1 знач.). Сдвиг изображения на экране телевизора. 2. спец. Деформация упругого тела, при которой параллельные слои его сдвигаются вдоль плоскости, но… … Малый академический словарь
сдвиг — а; м. 1. к Сдвинуть сдвигать (1 зн.) и Сдвинуться сдвигаться (1 зн.). С. изображения на экране телевизора. 2. Заметное изменение (обычно улучшение) в состоянии, развитии чего л. С. в работе. С. настроений в обществе. Большие экономические,… … Энциклопедический словарь
сдвиг площади изображения — (МСЭ Т T.800). [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN image area offset … Справочник технического переводчика
сдвиг, перемещение (в машинной графике) — Преобразование фрагмента изображения, при котором один отрезок остается на месте, а над другим выполняется сдвиг. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в… … Справочник технического переводчика
сдвиг (в информационных технологиях) — сдвиг Метод преобразования фрагмента изображения, при котором один отрезок остается на месте, а другой сдвигается. Промежуточные точки между ними перемещаются в зависимости от нового взаимного расположения сдвинутого и зафиксированного отрезков.… … Справочник технического переводчика
Сдвиг парадигм — Смена парадигм (англ. paradigm shift) термин, впервые введённый историком науки Томасом Куном в книге «Структура научных революций» (1962) для описания изменения базовых посылок в рамках ведущей теории науки (парадигмы). Впоследствии термин стал… … Википедия
Сдвиг парадигмы — Смена парадигм (англ. paradigm shift) термин, впервые введённый историком науки Томасом Куном в книге «Структура научных революций» (1962) для описания изменения базовых посылок в рамках ведущей теории науки (парадигмы). Впоследствии термин стал… … Википедия
Сдвиг полюсов — Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии. Катастрофический сдвиг полюсов не признанная академической наукой теория, согласно которой при… … Википедия
Оптическая стабилизация
Стабилизация изображения — это технология, применяемая в фото- и видеосъёмочной технике, механически компенсирующая собственные угловые движения камеры для предотвращения смазывания изображения при больших выдержках («шевелёнки»).
Система стабилизации не рассчитана на компенсацию движения объекта съёмки и, по сути дела, служит заменой штативу в некотором диапазоне условий съёмки.
Возможности систем стабилизации изображения ограничены. По самым оптимистическим данным, выигрыш в величине допустимой выдержки составляет 8-16 раз (3-4 ступени экспозиции).
Тем не менее, в целом ряде случаев автоматическая стабилизация бывает крайне полезна, позволяя увеличить выдержку на эти самые 3-4 ступени и спокойно снимать с рук в таких условиях освещения и на таких фокусных расстояниях объектива, когда без стабилизатора понадобился бы фотоштатив. Кроме того, иногда стабилизация позволяет избежать «принудительного» увеличения чувствительности матрицы, приводящего к росту уровня шумов.
Цифровая стабилизация изображения — технология обработки изображения в видеосъёмочной аппаратуре, позволяющая (помимо компенсации движения камеры) полностью или частично компенсировать движение одного из объектов в кадре и улучшить качество изображения благодаря меньшей смазанности сюжетно важных деталей.
Содержание
Технологии нашли применение в фотографии, видеосъёмке, в конструкции астрономических телескопов, биноклей. Наибольшее значение стабилизация имеет в случае опасности смещения камеры при съёмке, при большой выдержке и значительном фокусном расстоянии объектива. В видеокамерах движение камеры вызывает видимое колебание кадра к кадру. В астрономии толчки аппаратуры вызывают колебания линз, которые вызывают проблемы с регистрацией положения объектов в связи со смещениями изображений от номинального положения на фокальной плоскости.
«Шевелёнка» и «сдёргивание кадра»
Шевелёнка, смаз, стряхивание, сдёргивание (прост.) — фотографический дефект, смазанность, нерезкость изображения, вызванная движением аппарата или объекта съёмки при экспонировании.
Работа системы стабилизации
Стабилизаторы изображения бывают оптическими, с подвижной матрицей и электронными (цифровыми).
Датчик стабилизатора изображения
В фотоаппарат встроены специальные сенсоры, работающие по принципу гироскопов или акселерометров. Эти сенсоры постоянно определяют углы поворота и скорости перемещения фотоаппарата в пространстве и выдают команды электрическим приводам, которые отклоняют стабилизирующий элемент объектива или матрицу. При электронной (цифровой) стабилизации изображения углы и скорости перемещения фотоаппарата пересчитываются процессором, который устраняет сдвиг.
Оптический стабилизатор изображения
В 1994 году фирмой Canon была представлена технология, получившая название OIS (англ. Optical Image Stabilizer — оптический стабилизатор изображения). Стабилизирующий элемент объектива, подвижный по вертикальной и горизонтальной осям, по команде с сенсоров отклоняется электрическим приводом системы стабилизации так, чтобы проекция изображения на плёнке (или матрице) полностью компенсировала колебания фотоаппарата за время экспозиции. В результате при малых амплитудах колебаний фотоаппарата проекция всегда остаётся неподвижной относительно матрицы, что и обеспечивает картинке необходимую чёткость. Однако наличие дополнительного оптического элемента снижает светосилу объектива.
Технология оптической стабилизации была подхвачена другими производителями и хорошо зарекомендовала себя в целом ряде телеобъективов и камер (Canon, Panasonic). Разные производители называют свою реализацию оптической стабилизации по-разному:
Для плёночных фотоаппаратов OIS — единственная технология борьбы с «шевелёнкой».
Стабилизатор изображения с подвижной матрицей
Специально для цифровых фотоаппаратов компания Konica Minolta разработала технологию стабилизации (англ. Anti-Shake — антитолчок), впервые применённую в 2003 году в фотокамере Dimage A1. В этой системе движение фотоаппарата компенсирует не оптический элемент внутри объектива, а его матрица, закреплённая на подвижной платформе.
Объективы становятся дешевле, проще и надёжнее, стабилизация изображения работает с любой оптикой. Это важно для зеркальных фотоаппаратов, имеющих сменную оптику. Стабилизация со сдвигом матрицы, в отличие от оптической, не вносит искажений в картинку (быть может кроме вызванных неравномерной резкостью объектива) и не влияет на светосилу объектива. В то же время считается, что стабилизация сдвигом матрицы менее эффективна, нежели оптическая стабилизация.
С увеличением фокусного расстояния объектива эффективность Anti-Shake снижается: на длинных фокусах матрице приходится совершать слишком быстрые перемещения со слишком большой амплитудой, и она просто перестаёт успевать за «ускользающей» проекцией.
Кроме того, для высокой точности работы система должна знать точное значение фокусного расстояния объектива, что ограничивает применение старых трансфокаторов, и расстояния фокусировки при малой дистанции, что ограничивает её работу при макросъёмке.
Системы стабилизации с подвижной матрицей:
Электронный (цифровой) стабилизатор изображения
Существует и EIS (англ. Electronic (Digital) Image Stabilizer — электронная (цифровая) стабилизация изображения). При этом виде стабилизации примерно 40 % пикселей на матрице отводится на стабилизацию изображения и не участвует в формировании картинки. При дрожании видеокамеры картинка «плавает» по матрице, а процессор фиксирует эти колебания и вносит коррекцию, используя резервные пиксели для компенсации дрожания картинки. Эта система стабилизации широко применяется в цифровых видеокамерах, где матрицы маленькие (0,8Мп, 1,3Мп и др.). Имеет более низкое качество, чем прочие типы стабилизации, зато принципиально дешевле, так как не содержит дополнительных механических элементов.
Режимы работы системы стабилизации изображения
Существует три типичных режима работы системы стабилизации изображения: однократный или кадровый (англ. Shoot only — только при съёмке), непрерывный (англ. Continuous — непрерывно) и режим панорамирования (англ. Panning — панорамирование).
В однократном режиме система стабилизации активируется только на время экспозиции, что, теоретически, наиболее эффективно, так как требует наименьших корректирующих перемещений.
В непрерывном режиме система стабилизации работает постоянно, что облегчает фокусировку в сложных условиях. Однако эффективность работы системы стабилизации при этом может оказаться несколько ниже, поскольку в момент экспозиции корректирующий элемент может оказаться уже смещённым, что снижает его диапазон корректировки. Кроме того, в непрерывном режиме система потребляет больше электроэнергии, что приводит к более быстрому разряду аккумулятора.
В режиме панорамирования система стабилизации компенсирует только вертикальные колебания.
Два метода оптической стабилизации изображения
Стабилизация изображения (Image Stabilization, IS) — метод снижения размывания на фотографиях путем автоматического смещения линз камеры для компенсации смещения или вибрации самой камеры в процессе съемки. Оптическая стабилизация изображения (Optical Image Stabilization, OIS) — то, чего пользователи ожидают от флагманских смартфонов. Этот метод обеспечивает великолепные фотографии и видеоролики. Существуют два распространенных метода стабилизации изображений — программная электронная (Electronic Image Stabilization, EIS) и аппаратная оптическая. О том, что дает смартфонам оптическая стабилизация изображения можно понять на примере новых Samsung Galaxy S6.
Особенности двух основных методов стабилизации изображения были рассмотрены ресурсом Ubergizmo в заметке «What Is Image Stabilization?». Оптическая стабилизация изображения и то, как она работает, было проиллюстрировано видеороликом. Ведь пользователи порой обращают внимание только на «мегапиксельность» сенсора камеры смартфона, забывая о других не менее, а порой и более важных ее характеристиках, к которым в том числе относится и применяемая технология стабилизации изображения.
Оптическая стабилизация изображения устраняет весьма распространенную проблему — размытость изображения, вызванную смещением или дрожанием камеры в процессе съемки.
Впрочем, если устройство сильно трясется, то даже OIS поможет лишь в определенной степени. И важно понимать, что стабилизация изображения никак не препятствует дрожанию камеры как таковому, а лишь частично нейтрализует его последствия.
Электронная стабилизация изображения использует комплексный программный алгоритм улучшения качества изображения. Оптическая же является аппаратным решением. Необходимый результат достигается путем регулировки оптического пути сенсора изображений посредством перемещения или наклона объектива для компенсации или нейтрализации движения пользователя. Используются два метода. Ранее применялось изменение положения объектива. Более современный метод состоит в смещении всего модуля, благодаря чему и достигается стабилизация фотографии.
Причиной появляющегося на фотографиях размывания является смещение оптического пути между фокусирующими линзами и центром сенсора изображений. В методе со смещением линз только линзы в модуле камеры способны совершать небольшие смещения в противовес изменению оптического пути. Второй метод предполагает смещение всего модуля, в том числе и сенсора изображений и линз.
Для коррекции смещения оптическая стабилизация изображения использует различные сенсоры, определяющие смещение по осям координат X/Y. Сенсоры также определяют наклонное смещение и отклонение. Все собранные данные используются для того, чтобы вычислить, насколько велико изменение положения линз, необходимое для того, чтобы оптический путь точно соответствовал центру сенсора изображений.
Электронная стабилизация изображения достигает похожего результата, но, к сожалению, за счет качества изображения (например, обрезая фрагменты исходного изображения). Оптическая же снижает размывание, не влияя на качество исходного изображения. Возможно одновременное использование обеих стабилизирующих изображение технологий. Преимуществом электронной стабилизации является то, что для его функционирования требуется только программное обеспечение, а OIS нуждается в дополнительных аппаратных компонентах камеры. Поэтому оптическая стабилизация — более дорогое решение.
Интерес пользователей к камерам своих смартфонов постоянно растет. Это теперь один из важнейших элементов умного телефона, и производители постоянно оснащают ее все новыми и новыми возможностями. Не исключено, что вскоре пользователям Android-девайсов будет предоставлен простой способ обработки RAW-фотографий. Именно отсутствие оптической стабилизации изображения — одна из основных причин невысокой популярности в целом замечательного смартфона HTC One M9. Не исключено, что в случае ее появления в M10 пользователи вновь обратят свое внимание на флагманские телефоны HTC.
Какие характеристики камеры смартфона, помимо разрешения ее сенсора и наличия оптической стабилизации изображения, вы считаете наиболее важными?
Оптическая или цифровая: какая стабилизация лучше и зачем она вообще нужна
Чтобы изображения получались резкими даже при съемке «с рук», в гаджетах используют системы стабилизации. Но не все они одинаковы: рассказываем, какие из них лучше.
Зачем вообще нужна стабилизация изображения в смартфонах и камерах? Для получения четкого снимка и объект, и камера должны быть жестко зафиксированы. И если с объектом проблем не возникает (конечно, если это не ребенок или активное животное, которым правила съемки не объяснишь), то с самим гаджетом сложнее.
Если снимать в хорошую погоду с небольшого расстояния, выдержка на аппарате будет довольно короткой.
А если нет возможности использовать короткую выдержку? Например, вы снимаете в облачный день и света не так много. Хорошо, когда есть штатив или хотя бы неподвижный элемент, куда можно поставить гаджет (например, гранитный парапет). Но если все же приходится снимать с рук, приходит на выручку система стабилизации. Ее задача — компенсировать дрожания вашей руки.
Стабилизация: внешняя и встроенная
Стабилизация делится на активную и пассивную. К первой относятся всевозможные подвесы, стедикамы и другие устройства, стабилизирующие камеру в пространстве. Подобные аксессуары в наши дни применяются не только профессионалами, но и всеми подряд — в продаже достаточно стабилизаторов от множества брендов, рассчитанных на самый разный кошелек. Другое дело, что всем этим нужно уметь пользоваться, а пассивная стабилизация никаких особых знаний не требует.
Пассивная стабилизация уже встроена в саму камеру и работает либо по принципу оптической стабилизации изображения (Optical Image Stabilizer, OIS), либо по принципу цифровой стабилизации изображения (Electronic Image Stabilizer или Digital Image Stabilizer, EIS или DIS). Оба решения используются в современных смартфонах, но чем они отличаются и какое из них лучше?
Оптическая стабилизация: чистая механика
Общая задача стабилизаторов — сделать итоговое изображение четким, но добиваются этого системы разным способом. OIS, появившаяся раньше, представляет собой целый комплекс: стабилизирующий элемент объектива, способный двигаться по вертикали и горизонтали, с помощью электроприводов «маневрирует» по командам от гироскопических датчиков ради того, чтобы во время экспозиции фотоаппарата полностью компенсировать движения камеры в проекции изображения на пленке или матрице цифровых фотоаппаратов.
Позднее появилась система, в которой движения компенсируются уже с помощью подвижной матрицы внутри корпуса камеры — это позволило использовать сменные объективы, хотя и ценой чуть меньшей эффективности. Но заметить это можно только в очень сложных условиях съемки.
Оптические системы стабилизации со временем появились и в смартфонах. Не так давно мы тестировали vivo X60 Pro, где использована именно такая система. Можно посмотреть на видео, как она работает.
Цифровая стабилизация: программное решение
Цифровая стабилизация также борется с нечетким изображением, но делает это без механической «помощи». При EIS часть пикселей матрицы камеры не формирует картинку, а работает в качестве резерва — при движении процессор понимает, что изображение будет смазанным и использует эти «запасные» пиксели, чтобы компенсировать потери. В итоге кадры получаются четкими, но зачастую менее качественными, чем то же изображение, выполненной с помощью устройства с оптической стабилизацией. При этом реализация подобного решения требует меньших затрат, а потому цифровая стабилизация часто встречается в бюджетных устройствах.
Флагманские смартфоны обычно имеют комбинированную систему стабилизации, в которой OIS дополняется EIS. Это позволяет добиться максимально качественного изображения, хотя, например, Google в своей линейке Pixel использует только цифровую стабилизацию — софт у компании написан качественный, и он дает возможность делать весьма хорошие кадры. Другое дело — бюджетные устройства, создатели которых экономят на комплектующих и в итоге получается, что сами по себе компоненты камеры не лучшие, к тому же слабое «железо» не позволяет реализовать максимально качественные алгоритмы EIS, так что на выходе получаются фотографии, которые без слез можно разглядывать только на экране этого же смартфона.
Оптическая или цифровая стабилизация: что лучше?
Так что в итоге, какой из вариантов лучше? Однозначно, оптическая. Но реализовать ее не так просто — особенно, в компактных объективах смартфонов. Поэтому такие системы используют, главным образом, в дорогих гаджетах. Например, в большинстве моделей из нашей подборки лучших камерофонов 2021 года.
Цифровая стабилизация — «эконом-вариант». Лучше, чем никакой, но не так эффективная, как оптическая. Такие встречаются, как правило, в смартфонах среднего класса.
Всё что нужно знать о системах стабилизации изображения
Системы стабилизации изображения значительно упрощают съёмку с рук, компенсируя колебания камеры и предотвращая появление на изображении шевелёнки или смаза. Особую эффективность их применение приобретает в связке с длиннофокусной оптикой. В рамках материала мы расскажем об основных типах систем стабилизации, принципах их действия, а также плюсах и минусах каждого вида стабилизаторов.
Самым простым стабилизатором изображения является штатив и его производные (монопод, настольный или плечевой штативы). С помощью данного аксессуара удаётся неподвижно закрепить фотоаппарат и сделать кадр на длинной выдержке. Встроенные в камеру системы стабилизации выполняют схожую функцию, но не на столь длинных выдержках. Они сглаживают эффект от тряски или других смещений фотокамеры, а также позволяют выиграть от 1 до 5 ступеней экспозиции при съёмке с рук в условиях недостатка света.
Системы стабилизации изображения придут на помощь фотолюбителю в ситуациях, когда невозможно воспользоваться вспышкой. Ещё они всегда готовы посодействовать в получении качественного результата без смаза и шевелёнки, когда сильное поднятие светочувствительности (ISO) не позволяет избавиться от необходимости выставлять достаточно длинную выдержку для съёмки текущей сцены.
Стабилизатор выполняет не менее важные функции и при съёмке видео. Его наличие в арсенале камеры позитивным образом сказывается на плавности отснятого видеоряда. Некоторые системы стабилизации также умеют компенсировать высокочастотные вибрации от моторов дронов и радиоуправляемых моделей, позволяя заполучить на выходе чёткую картинку без дрожания объектов в кадре.
Родоначальником систем стабилизации выступает видеотехника. Но если раньше стаб присутствовал только на борту объективов, то сейчас активно встречается в самих фотоаппаратах, экшн-камерах и внутри камер мобильных телефонов.
Справка. В среде производителей фототехники не принято делиться своими секретами с конкурентами, поэтому каждый крупный игрок выпускает собственную систему стабилизации изображения с фирменным наименованием:
Существует три основных типа стабилизации: цифровая, оптическая и матричная.
Цифровая стабилизация
Работа систем цифровой (иными словами — электронной) стабилизации основывается на программных алгоритмах улучшения качества, которые определяют сдвиг изображения и компенсируют его за счёт обрезания краёв кадра исходного изображения. В таком случае для построения картинки используется вся площадь сенсора, но создаётся своеобразный кроп — изображение уменьшается вплоть до 40 % от первоначального размера, а часть пикселей резервируется под его возможный сдвиг в рамках фактически снятого кадра. Проще говоря, при дрожании камеры картинка плавает по поверхности матрицы от одного края к другому.
Зачастую цифровая стабилизация используется в экшн-камерах, цифровых компактных фотоаппаратах и смартфонах, т.к. она не требует места для установки дополнительных аппаратных компонентов и, соответственно, не оказывает влияния на ценник устройства.
В то же время электронный стабилизатор, как было сказано выше, обрезает часть картинки (к примеру, семейство Action-камер Sony в обычном режиме ведёт съёмку с углом поля зрения 170°, а со стабом он урезается до 120°). Негативные воздействия на качество изображения также проявляются в создании помех при использовании цифрового зума и в потере детализации картинки как при фото-, так и при видеосъёмке. Более эффективными альтернативами цифрового стабилизатора являются оптические и матричные системы стабилизации.
Оптическая стабилизация
Данные системы компенсации колебаний применяются, как следует из названия, в конструкции объективов. Впервые оптическая стабилизация была установлена на борту зум-объектива Canon EF 75-300mm f/4-5.6 IS USM в 1995 г. В семействе смартфонов её дебют состоялся намного позже — в 2012 г. указанной системой был оборудован модуль основной камеры телефона Nokia Lumia 920.
Принцип действия систем оптической стабилизации кардинально отличается от цифрового способа. В объектив вводится дополнительный элемент (например, подвижная двояковогнутая линза), который посредством электрического привода отклоняется в противоположную сторону относительно оптической оси объектива. Необходимый уровень смещения определяют 2 специальных датчика измерения угловой скорости (по вертикали и по горизонтали), оснащённые гироскопами. А команду на изменение положения дополнительной линзы подаёт скоростной микроконтроллер, считывающий до 1000 показаний за 1 секунду. В итоге с точки зрения матрицы проекция изображения остаётся неподвижной.
Производительность систем оптической стабилизации оценивается возможностью выиграть от 2 до 5 ступеней экспозиции при съёмке с рук в условиях неблагоприятного освещения. К примеру, мощный телезум Tamron 150-600mm F/5.0-6.3 Di VC USD позволяет компенсировать до 4.5 стопов, что на максимальном фокусном расстоянии даёт возможность получать качественный результат при съёмке с выдержками вплоть до 1/30 с.
Как видно, наибольшая эффективность стабилизатора наблюдается при работе на значениях выдержки, близких к 1/эквивалентное фокусное расстояние. На длинных и коротких выдержках его желательно отключать, т.к. стаб может создавать небольшое «мыло».
Основными аргументами «за» оптические системы стабилизации выступает их высокая эффективность, особенно при работе с длиннофокусными объективами, а также предоставление возможности увидеть на экране смартфона или в видоискателе фотоаппарата изображение в стабилизированном виде ещё до нажатия на кнопку спуска затвора. К тому же они занимают позицию на голову выше цифровых систем и не оказывают влияния на качество картинки.
Аргументы «против» на фоне преимуществ оптических стабов выглядят откровенно блекло. К ним можно отнести разве что оказание влияния на светосилу объектива из-за наличия дополнительных линз в оптической схеме и более высокую стоимость устройств со стабом на борту.
Полезно знать. Существуют узконаправленные системы оптической стабилизации, которые раскрываются при макросъёмке или в ходе создания фоторепортажей со спортивных событий (например, Canon Hybrid IS и Nikon VR Sport соответственно).
Матричная стабилизация
В отличие от оптических систем, дополнительный элемент для подавления вибраций, тряски рук и компенсации колебаний скрывается непосредственно в корпусе фотокамеры. И это не что иное, как сама матрица, закреплённая на подвижной стабилизирующей площадке. Компенсация траектории смещения камеры осуществляется путём перемещения платформы с сенсором в плоскости, перпендикулярной оптической оси объектива.
Управляющий микропроцессор на основе полученных данных с датчиков измерения угловой скорости и гироскопических сенсоров запускает в движение электроприводы для смещения площадки с матрицей. Говоря более простыми словами, сенсор изображения перемещается вверх-вниз, вправо-влево или наклоняется вдоль собственной оси (при условии использования 5-осевой системы), согласно реакции автоматики на малейшие отклонения положения камеры.
Самым важным преимуществом систем матричной стабилизации изображения является возможность работы с любыми объективами, в т.ч. старыми советскими (Гелиос, Юпитер и прочими). В связке с соответствующей камерой какая угодно оптика (кроме, пожалуй, мануальных беспроцессорных объективов) становится стабилизированной. А наиболее прогрессивные системы поддерживают ещё и двойную стабилизацию — и посредством оптического стаба внутри объектива, и с помощью технологии сдвига матрицы. Ярким примером такой камеры выступает флагманская беззеркалка Panasonic Lumix DMC-GX8.
В пользу матричных стабилизаторов также говорит минимальный уровень искажений получаемых изображений, отсутствие влияния на светосилу оптики и бесшумность при работе — важный фактор для видеографов.
Камеры с технологией сдвига матрицы обычно стоят дороже своих аналогов. Но стоит помнить о том, что они избавляют от необходимости использования стабилизированной оптики, позволяя существенно сэкономить на приобретении объектива. Вот только в паре с телевиками матричная стабилизация не всегда в состоянии эффективно помочь — площадка с матрицей попросту не успевает сдвинуться на большое расстояние за столь короткий промежуток времени, необходимый для обеспечения стабилизации картинки.