Чего боятся алюминиевые радиаторы
Чего боятся алюминиевые радиаторы
Вы используете устаревший браузер. Этот и другие сайты могут отображаться в нём некорректно.
Необходимо обновить браузер или попробовать использовать другой.
Алюминиевые радиаторы, что может быть лучше? Вес в 2,5-3 раза меньше, чем у железа или чугуна, а теплопроводность в 3 раза больше чем у железа и в почти 5 раз больше, чем у чугуна.
Что даёт вес, всем понятно, это меньше нагрузка на крепления, на стену, меньше вес при транспортировке и подъёме на этаж. Теплопроводность, это способность материала проводить через себя тепло, чем она выше, тем быстрее металл радиатора отдаёт энергию теплоносителя и тем быстрее охлаждается, когда нагрев не нужен.
Но так ли идеален алюминий? Рассмотрим его свойства и разные нюансы.
Алюминий при реакции с воздухом (кислородом), образует на своей плоскости тонкую плёнку из оксида алюминия, которая не реагирует далее с водой и кислотами, но достаточно легко растворяется щелочами.
4Al+3O2 = 2Al2O3 Или с водой, образуя ту же самую оксидную плёнку и свободный водород. 2Al+3H2O = Al2O3 +3H2
Всем известна эта проблема с выделяемым водородом на алюминиевых радиаторах. Но она не так долга, всё закончится когда на поверхности алюминия образуется эта защитная плёнка оксида. Когда в описании к алюминиевым радиаторам вы читаете, что на внутренней поверхности есть защитное покрытие, значит, скорее всего, производитель уже дал поверхности покрыться оксидом, поместив секции радиатора в воду или же во влажный воздух. Если плёнки оксида ещё нет, она появится при контакте с теплоносителем (если это вода), при этом какое-то время выделяемый водород будет удаляться автоматическими воздухоотводчиками, снижая давление в системе, при этом некоторые паникуют, думая, что у них есть утечка.
Иногда при разных нюансах, оксидная плёнка может повреждаться мусором, песком в системе отопления, после чего идёт новая реакция алюминия с водой и нарастания плёнки оксида. Это весьма скоротечный процесс, потому как повреждения плёнки обычно минимальны.
На этом все злоключения пользователя с алюминиевыми радиаторами заканчиваются, если у него автономная система и вода в качестве теплоносителя. Если какая-то «незамерзайка», то тут могут быть нюансы. Стандартные «незамерзайки» на основе пропиленгликоля (которые рекомендованы для систем отопления в силу их меньшей агрессивности, чем этиленгликолевые), никак не реагируют с алюминием. Но самодельные «бадяжные» смеси могут нарушать целостность оксидной плёнкт на алюминии.
Если вдруг так случилось, что пользователь рискнул поставить алюминиевый радиатор на центральное отопление, то это равносильно бомбе замедленного действия. Что же происходит при этом?
Не секрет, что в системах центрального отопления, в теплоноситель добавляется щёлочь для промывки всех её частей (особенно металлических), препятствованию коррозии. При этом постоянно поддерживается щелочной pH.
При этом идёт реакция защитной плёнки из оксида алюминия и растворённой щёлочи в теплоносителе.
Al2O3+2NaOH + 7H2O = 2Na[Al(OH)4(H2O)2] который позже распадается на 2NaAlO2+8H2O то есть на алюминат натрия и воду. Но и это соединение не стабильно и снова реагирует с водой, становясь тетрагидроксоалюминатом натрия Na[Al(OH)4]. Но и эта комплексная соль нестабильна и распадается на другие комплексные соли, но это не главное, главное, что плёнка оксида алюминия перстаёт защищать алюминий основания. и он начинает реагировать со щёлочью теплоносителя
2Al+2NaOH+6H2O = 2Na[Al(OH)4]+3H2 Снова с выделением водорода и образованием тетрагидроксоалюмината натрия. Так щёлочь теплоносителя съедает тело радиатора. Продукты же реакции уносятся теплоносителем и доставляется новая порция щелочного теплоносителя. Алюминий просто вымывается щёлочью.
Со временем в каких-то утончившихся местах радиатор может лопнуть от того, что слой алюминия не выдерживает давления в системе отопления (либо при гидроударе).
Но тут ещё накладываются нюансы изготовления алюминевых радиаторов. Рассмотрим и их.
Если радиаторы сделаны путём литья, когда алюминий расплавлен, а потом влит в формы и он создал кристаллическую структуру, то его структура примерно такова
1. Приготовление порошка.
2. Смешивание.
3. Прессование.
4. Спекание.
Итак, если у вас нормальный производитель, он выдержит всю технологию и вы получите качественное, но дорогое изделие. А так как сейчас идёт борьба за удешевление (а значит борьба за покупателя или за прибыль), то некоторые нерадивые производители из стран отдалённых (ну вы понимаете), могут вносить в технологию следующие погрешности.
1. Приготовление порошка может идти с нарушением его фракции, то есть укрупнения частиц. Так как именно порошок в порошковой металлургии самый застратный момент, его стараются удешевить. При этом может появляться порошок с гранулами вот такого размера
2. Смешивание. Чтобы ещё более удешевить порошковую смесь алюминия, её могут смешать с другими, более дешёвыми порошками, например силумином, цинком, железом, чугуном, а при пущей наглости пластиком или даже мусором. Можно также нетщательно еремешать порошки между собой.
3. Прессование. При прессовании происходит так, что гранулы порошка прижимаются друг к другу некоторыми частями с такой силой, что происходит «зацеп» кристаллической решётки на атомарном уровне. Так между гранулами образуется пятно котнтакта, где материалы как бы склеиваются между собой. Обычно необходимо при этом обрабатывать пресс-формы ультразвуком для большей усадки и большей плотности проникновения между гранулами, но это ведь лишние траты для того производителя, который решил сэкономить.
4. Спекание. Это процесс, когда полученную деталь нагревают ниже температуры плавления материала, но при этом пятно контакта между гранулами увеличивается и деталь становится гораздо крепче. Тут тоже можно сэкономить, уменьшив время спекания или температуру.
И что тогда в этом случае мы получаем в разрезе. Возьмём тот же самый рисунок как с литьём, но теперь наши атомы алюминия станут гарнулами порошка (естественно гранулы несравнимо больше чем атомы)
Теплоноситель получит гораздо большую площадь реакции, при этом увеличится её скорость, то есть съедать алюминий щелочной теплоноситель будет быстрее. Заодно так выкусывая из тела радиатора целые гранулы неалюминия, он будет гораздо быстрее утоньшать стенку радиатора, что приведёт к более быстрой поломке.
Теперь рассмотрим распространённый миф, что если алюминиевый радиатор с щелочным теплоносителем закрыть герметично в радиаторе (перекрыть краны подачи и обратки), со временем от выделенного из-за реакции алюминия со щёлочью водорода, радиатор может взрваться-лопнуть.
Во-первых, при такой реакции всегда есть растворённый водород, который не существует в виде свободного газа. Он не будет существовать до тех пор, пока давление в пузыре водорода, который выделился в свободном виде, будет выше давления в теплоносителе. Чтобы было понятнее, вспомните бутылку газированной воды. Пока она закрыта, есть небольшая полость у горлышка бутылки, где есть газ, но из воды он не выделяется, так как давление воды равно давленю в этой полости с газом. Но стоит только открыть бутылку и снизить давление, растворённый в воде газ быстро себя проявляет. Но стоит снова закрыть бутылку, через время пузырьки газа вновь перестают выделяться, пока давление не выровняется.
Так же и в радиаторе, газ сначала будет растворяться в теплоносителе, потом освободит себе какую-то полость в верхней части радиатора, откуда выместит теплоноситель, за счёт чего повысится несколько давление в теплоносителе. Но газ очень сжимаем, а жидкость нет, поэтому накачать эту газовую полость водородом до такой степени, чтобы она вытеснила много воды и создала критическое давление, это нужно очень много водорода.
А почему же мы не сможем получить так много водорода? Потому как количество щёлочи в нашем запертом радиаторе неизменно и с каждой прореагировавшей молекулой алюминия, концетрация щёлочи становится всё меньше, ведь она разлагается на описанные выше комплексные соли.
Но при всех причинах, которые обслуживающая отопление контора может рассказать пользователю по поводу взорвавшегося радиатора, вина лежит только на пользователе. Ибо нельзя ставить алюминиевые радиаторы для эксплуатации с щелочным теплоносителем. Для этого давно уже придуман биметалл.
Алюминиевые радиаторы: преимущества и недостатки, сравнение
Отправим материал на почту
Современные контуры отопления практически ничем не отличаются от тех, которые были в наших домах и квартирах сорок или пятьдесят лет назад, так как законы физики неизменны. Тем не менее, что-то поменялось и, в первую очередь, это сами отопительные радиаторы или, как их часто называют по старинке – батареи. Если раньше для их изготовления использовался только чугун, то сейчас добавилась черная и нержавеющая сталь, медь и, конечно же, алюминий.
Какими бывают радиаторы отопления
Как мы уже упомянули, для изготовления отопителей сейчас стали использовать разные металлы. Это, в первую очередь, связано с их теплопроводностью, ведь чем выше теплоотдача, тем быстрее нагреется помещение. Также изменились материалы для контуров (обвязки котлов) – сегодня уже почти никто не станет использовать для этого металлические трубы – все переходят на полипропилен, не подверженный коррозии и выдерживающий большие нагрузки по внутреннему давлению и температуре теплоносителя. К тому же полипропилен, имея низкую теплопроводность, позволяет горячей воде наиболее эффективно отдавать свою энергию именно батарее.
Примечание: очень важную роль при выборе радиаторов играет прочность его секций. Если рабочее или номинальное давление в многоэтажных домах держится на уровне 4-10 атмосфер, то опрессовочное (испытательное) при запуске системы в начале отопительного сезона может достигать 22-23 атмосфер (зависит от высотности и расположения дома).
Видео описание
Как выбрать радиатор отопления.
Чугун
Поколение 50+ помнит, о том, что при слове «батарея» у них, как правило, возникала ассоциация с чугунным радиатором в квартире, изредка в частном доме – просто тогда других не было, если не считать самодельных стальных регистров из труб. Чугун, как металл, имеет одну интересную особенность; чем выше температура теплоносителя, тем меньше его теплопроводность. Это плохо? Не совсем. Если вы живете в многоэтажном доме и подключены к централизованному отоплению, то заметили, что воду по системе гоняют не постоянно и это связано с материалом отопительного контура.
Чугунные батареи долго держат тепло при отключенной циркуляции воды, то есть, горячая вода, заполнившая секции, остывает очень долго, так как отдает свою энергию оболочке не сразу, а частями. Получается, чем больше остывает теплоноситель, тем быстрее он отдает радиатору свое тепло, но охладиться полностью он не успевает, так как в это время опять запускаются двигатели циркуляционных насосов. Такая система очень удобна для многоэтажных домов и несколько затратная для частного сектора с автономными котельными. Максимальное давление, которое выдерживают чугунные батареи, колеблется в пределах 25-30 атмосфер – этого достаточно для кратковременного опрессовочного давления. Коэффициент теплопроводности составляет 62,8 Вт/(м*град).
Сталь
С секционным вариантом прибора здесь несколько проще – в случае протечки можно заменить плохое ребро новым и проблема будет решена, а вот у панельных моделей менять можно только сам отопитель. Как бы там ни было, соотношение цены и качества устраивает многих людей, и они их покупают. Радиаторы из стали выдерживают высокое давление, поэтому подходят как для централизованного, так и для автономного отопления.
Биметалл
Биметаллические радиаторы, так же, как и стальные могут быть секционными или панельными, только устройство стенок здесь несколько другое. Так, сердечник прибора (коллекторы и вертикальные каналы-фильеры) изготавливаются из нержавеющей стали, выдерживающей высокое давление. Верхний слой прибора состоит из наплавленного алюминия, имеющего высокую теплопроводность. Можно примерно подсчитать теплоотдачу батареи путем простых арифметических действий, так как мы знаем, какая теплопроводность у стали и алюминия: (45,4+209,3)/2=252,7 Вт/(м*град).
Также есть полубиметаллические приборы, где из нержавеющей стали выполнены только вертикальные каналы, а коллекторы и экструзионная заливка из алюминия. Это повышает теплоотдачу, но резко понижает прочность и для высоток их использование нежелательно. В некоторых отдельных случаях стальной сердечник батареи заменяют медным, а её теплопроводность в полтора раза выше, чем у алюминия. В общем, получается (209,3+389,6)/2=299,45 Вт/(м*град). Это идеальный вариант для автономного отопления, но его стоимость зачастую неподъемна для рядового пользователя.
Алюминий
Алюминиевые радиаторы считаются самумы эффективными в отношении теплоотдачи, не считая эксклюзивных биметаллических Cu+Ai, так как последние можно взять только под заказ. Как уже упоминалось выше, теплопроводность алюминия составляет 209,3 Вт/(м*град), но при этом они самые слабые в отношении прочности стенок, так как цветмет всегда проигрывает в этом параметре любой стали и чугуну.
Экструзионные
Такую модификацию также называют полубиметаллической, хотя, по сути, это одно и то же. Весь радиатор в целом здесь выполнен из вторичного алюминия путем экструзии (продавливание субстанции через специальные насадки – экструдеры), но вертикальные трубы (фильеры) для соединения коллекторов здесь стальные. Теплоотдача такого прибора почти вплотную приближается к 209,3 Вт/(м*град), но они неразборные – что-то вроде вышеупомянутых панельных обогревателей. В основном такие модели пользуются популярностью среди алюминиевых из-за более низкой стоимости.
Литые
По принципу изготовления и эксплуатации, это обычный секционный радиатор, где каждое ребро отливается отдельно, а между собой они соединяются ниппелями. То есть, вы имеете возможность подсчитать, сколько ватт вам нужно для обогрева комнаты (по квадратуре или по кубатуре) и, опираясь на паспортные данные прибора, купить нужное количество секций. Собираются-разбираются они очень просто – при помощи радиаторного ключа, как любые секционные батареи такого типа. Стоят они, конечно дороже экструзионных алюминиевых отопителей, зато гораздо удобнее и практичнее в эксплуатации.
Примечание: алюминиевые радиаторы любой модификации, как правило, используют только при автономном отоплении. Дело здесь не только в высоком давлении централизованных систем, но и в несовместимости алюминия с другими металлами (опасность окисления). В домашней котельной используются специальные составы, которыми заменяют теплоноситель.
Анодированные
Основное отличие таких приборов от обычных состоит в том, что алюминий здесь подвергается анодному оксидированию, то есть, на выходе получается очищенный цветмет. Производители утверждают, что их продукция не подвержена коррозии (окислению), но, конечно же, при определённых условиях. Кроме того, есть еще один немаловажный момент в моделировании таких отопителей: секции между собой здесь соединяются не ниппелями, затрудняющими движение теплоносителя в коллекторе, а наружными муфтами. Таким образом, внутренние стены коллектора остаются гладкими, наиболее оптимальными для свободной циркуляции жидкости.
Видео описание
Радиаторы: алюминий или биметалл?
Как выбрать радиатор по давлению в системе
Вне зависимости от того, какой радиатор вам нравится больше, или какая его стоимость, все равно такие приборы должны соответствовать давлению в системе, причем, не только номинальному рабочему, но и испытательному (опрессовочному). Если вы живете в квартире многоэтажного дома и пользуетесь централизованным отоплением, то вам, скорее всего, известно, что ТЭЦ или котельная в начале отопительного сезона запускает в систему воду под повышенным давлением. Это необходимая мера, которая позволяет выявить слабые места в контуре (трубах, батареях). Впрочем, жильцы, как правило, жалуются, на протечки, не понимая, что происходит (ведь в прошлом году не текло), но лучше устранить проблему в начале сезона, чем сделать это зимой, спуская воду со всего стояка, а при сильных морозах это ощутимо, да и денег стоит.
Материал отопителя | Среднее давление, Бар | |
Опрессовочное | Рабочее | |
Чугун | 15-18 | 9-12 |
Сталь | 10-13 | 6-8 |
Биметалл | 30-35 | 20-25 |
Алюминий | 9-15 | 6-8 |
Примечание к таблице: 1 Бар равен 0,986923 атмосферы, поэтому при монтаже трубопроводов чаще всего используют именно Бары.
В верхней таблице указаны средние величины рабочего и испытательного давления, но оно может быть несколько выше, поэтому, при выборе радиаторов вам придется учесть эти цифры. Но вам также придется считаться с тем, в каком доме вы живете (имеются в виду здания, подключенные к централизованному отоплению). Согласно СНиП 41-01-2003 давление при опрессовке системы должно в 1,5 раза превышать рабочее, но у нас могут завысить эту планку. Поэтому сравните возможности желаемых радиаторов с таблицей, расположенной ниже.
К-во этажей | Среднее давление, Бар | |
Рабочее | Опрессовочное | |
До 5 | 2-4 | 3-6 |
9-10 | 5-7 | 7,5-10,5 |
11 и выше | 12-14 | 18-21 |
Небоскребы | Задается проектировщиком здания |
Важно! Если хотите узнать точное испытательное и рабочее давление в вашей отопительной системе, то для этого нужно обратиться непосредственно к коммунальному предприятию, обслуживающему ваш дом.
Теплоноситель для алюминиевых радиаторов
Всем известно, что вода является самым дешевым теплоносителем для отопительных систем многоэтажных и частных домов, но вот алюминиевые радиаторы с этим не согласны. Практика – наилучший учитель и она показала, что при использовании питьевой или даже технической воды в отопительном контуре (трубах, радиаторах) появляются окислы, накипь и ещё какие-то непонятные шламы. Так что такую систему придётся периодически промывать, чтобы отложения не приобрели состояние камня, когда обычная промывка уже ничем не поможет. Это говорит о том, что нужен какой-то особый теплоноситель, который дружит с алюминием и его можно купить в магазине.
Важно! При монтаже отопительной системы с алюминиевыми радиаторами ни в коем случае нельзя использовать медные и латунные краны и фитинги. Для трубопровода, всех соединений и запорной арматуры в данном случае лучше всего подходят трубы и фитинги из полипропилена.
Для стабилизации работы автономных отопительных систем используются различные антифризы, но, как вы понимаете, это не всегда безопасно, поэтому следует уделять особое внимание надежности контура (всех паечных и резьбовых соединений). Такие жидкости обычно не сливают на период теплого сезона – в этом попросту нет нужды. Н не забывайте, что не во все системы можно заливать такой теплоноситель (об ограничениях расскажем чуть ниже).
Сделайте свой выбор:
В каких случаях не следует использовать антифриз в качестве теплоносителя:
Видео описание
Лучшие алюминиевые радиаторы (батареи) отопления.
Заключение
Как вы понимаете, покупка алюминиевых радиаторов сопряжена с соблюдением некоторых условий, которые обязательно придётся соблюдать при их эксплуатации. Но при этом вы получаете легкие приборы с отличной теплоотдачей, следовательно, с экономией энергозатрат на отопление. Сопоставьте все за и против, после чего сможете сделать продуманный выбор.
Чем плохи алюминиевые радиаторы для отопления
Радиаторы отопления присутствуют в каждом доме. Не всегда мы пользуемся теми, что были ранее установлены в квартирах, и часто стараемся их заменить. Учитывая, что монтаж отопительной системы – дело сложное и дорогостоящее, хочется, чтобы выбранные радиаторы «не подвели». Но выбирая алюминиевые батареи, можно прогадать с выгодой. Сама покупка таких радиаторов порадует ценой, но далее придется столкнуться с некоторыми их недостатками.
Главные недостатки алюминиевых радиаторов
Объективно, недостатки имеются у радиаторов любого типа и материала. Главное условие для отопительной системы – чтобы она была верно рассчитана под имеющуюся площадь помещения. Тогда тепла будет достаточно. Но есть и другие проблемы, с которыми могут столкнуться владельцы алюминиевых радиаторов:
На рынке будет представлено много моделей алюминиевых радиаторов, которые имеют улучшенный состав и усиленную конструкцию. Такие меры могут свести риски к минимуму, но все же повышенную кислотность воды в центральном водоснабжении отрегулировать самостоятельно не удастся. Получается, что использовать алюминиевые радиаторы в многоквартирных домах не стоит вовсе.
Есть еще один недостаток – в составе радиатора из алюминия может присутствовать цинк. Этот элемент выделяет вещества, которые нельзя назвать безопасными для человека. Следовательно, и в частном доме, где можно влиять на кислотность воды, все же не стоит пользоваться алюминиевыми радиаторами.