Частота гетеродина что это
Гетеродин
Гетероди́н (от греч. ἕτερος — иной; δύναμις — сила) — маломощный генератор электрических колебаний, применяемый для преобразования частот сигнала в супергетеродинных радиоприёмниках, приемниках прямого преобразования, волномерах и пр.
Изначально гетеродином называли радиоприёмник, в котором имелся дополнительный генератор высокой частоты, настроенный на частоту, близкую к частоте принимаемого сигнала, что повышало чувствительность радиоприёмника. В дальнейшем, после изобретения супергетеродина, гетеродином стали называть этот генератор.
Гетеродин создаёт колебания вспомогательной частоты, которые в блоке смесителя смешиваются с поступающими извне колебаниями высокой частоты. В результате смешения двух частот, входной и гетеродина, образуются ещё две частоты (суммарная и разностная). Разностная частота (при амплитудной модуляции постоянная) используется как промежуточная частота, на которой происходит основное усиление сигнала.
К гетеродинам устанавливаются высокие требования по стабильности частоты и амплитуды, а также спектральной чистоте гармонических колебаний. Чем выше эти требования, тем сложнее конструктивное исполнение гетеродина: стабилизируют напряжение питания, применяют сложные схемы, исключающие влияние внешних факторов на частоту генератора, компоненты со специальными свойствами, гетеродин помещают в термостат, используют системы автоматической подстройки частоты и т. д. Если гетеродин работает на фиксированной частоте, применяют стабилизацию с помощью кварцевого резонатора. В современной радиоаппаратуре в качестве перестраиваемых гетеродинов все чаще применяют цифровые синтезаторы частоты, которые обладают рядом важных преимуществ.
См. также
Ссылки
Полезное
Смотреть что такое «Гетеродин» в других словарях:
гетеродин — гетеродин … Орфографический словарь-справочник
ГЕТЕРОДИН — (от гетеро. и греч. dynamis сила) маломощный генератор, используемый как источник колебаний вспомогательной частоты при преобразовании по частоте высокочастотных сигналов (напр., в супергетеродинном радиоприемнике) … Большой Энциклопедический словарь
ГЕТЕРОДИН — ГЕТЕРОДИН, прибор, создающий колебания вспомогательной волновой ЧАСТОТЫ, которые смешиваются с поступающими извне для получения разностной частоты. Используется в радиочастотных ОСЦИЛЛЯТОРАХ и приемниках. Гетеродинная система была изобретена… … Научно-технический энциклопедический словарь
ГЕТЕРОДИН — (Heterodyne) маломощный ламповый генератор, применяемый для возбуждения вспомогательных незатухающих колебаний при гетеродинном приеме. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь
гетеродин — сущ., кол во синонимов: 2 • генератор (63) • супергетеродин (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
гетеродин — а, м. hétérodyne < гр. heteres другой + dynamis сила. Маломощный вспомогательный генератор электрических колебаний высокой частоты, прим. гл. обр. в преобразователях частоты. Крысин 1998. Лекс. СИС 1954: гетероди/н … Исторический словарь галлицизмов русского языка
гетеродин — Генератор гармонических колебаний, используемый для преобразования частоты в радиоприемнике. [ГОСТ 24375 80] Тематики радиосвязь Обобщающие термины радиопередатчики EN local oscillatoroscillator … Справочник технического переводчика
ГЕТЕРОДИН — маломощной вспомогательный (см.) гармонических электрических колебаний с самовозбуждением на транзисторе или электронной лампе, служит для преобразования (смешения) несущей частоты сигналов в радиоаппаратуре и радиоизмерительных устройствах … Большая политехническая энциклопедия
гетеродин — (гетеро. гр. dynamis сила) маломощный вспомогательный генератор электрических колебаний высокой частоты, применяемый гл. обр. в преобразователях частоты (напр., в супергетеродинных радиоприемниках, измерительных устройствах). Новый словарь… … Словарь иностранных слов русского языка
гетеродин — (от гетеро. и греч. dýnamis сила), маломощный генератор, используемый как источник колебаний вспомогательной частоты при преобразовании по частоте ВЧ сигналов (например, в супергетеродинном радиоприёмнике). * * * ГЕТЕРОДИН ГЕТЕРОДИН (от гетеро … Энциклопедический словарь
Гетеродин
Из Википедии — свободной энциклопедии
Гетероди́н (от греч. ἕτερος — иной; δύναμις — сила) — маломощный генератор электрических колебаний, применяемый для преобразования частот сигнала в супергетеродинных радиоприёмниках, приёмниках прямого преобразования, волномерах и пр.
Гетеродин создаёт колебания вспомогательной частоты, которые в блоке смесителя смешиваются с поступающими извне колебаниями высокой частоты. В результате смешения двух частот, входной и гетеродина, образуются ещё две частоты (суммарная и разностная). Разностная частота используется как промежуточная частота, на которой происходит основное усиление сигнала.
К гетеродинам устанавливаются высокие требования по стабильности частоты и амплитуды, а также спектральной чистоте гармонических колебаний. Чем выше эти требования, тем сложнее конструктивное исполнение гетеродина: стабилизируют напряжение питания, применяют сложные схемы, исключающие влияние внешних факторов на частоту генератора, компоненты со специальными свойствами, гетеродин помещают в термостат, используют системы автоматической подстройки частоты и т. д. Если гетеродин работает на фиксированной частоте, применяют стабилизацию с помощью кварцевого резонатора. В современной радиоаппаратуре в качестве перестраиваемых гетеродинов всё чаще применяют цифровой синтезатор частоты, который обладает главным преимуществом: стабильность частоты гетеродина зависит только от стабильности частоты опорного генератора. [ каких? ]
Частота гетеродина что это
Автор: admin от 1-11-2012, 17:04, посмотрело: 2811
Гетеродин – генератор, используемый для преобразования частот сигнала в волномерах, приемниках прямого преобразования, супергетеродинных радиоприемниках.
Раньше под названием «гетеродин» подразумевался радиоприемник, который имел дополнительный высокочастотный генератор, настраиваемый на частоту, близкую к частоте сигнала, который принимается. В широкие массы этот приемник попал не так давно – в начале 70-х годов прошлого века. Сама гетеродинная система была создана в 1905 году Р.А.Фессенденом. В те времена еще использовались детекторные приемники и искровые передатчики, которые были созданы на основе заполненной железными опилками стеклянной трубки с несколькими выводами – когерера. Реле радиоприемника срабатывало из-за уменьшения сопротивляемости когерера при воздействии приходящей волны поля и возникновении микроскопических разрядов между металлическими опилками. Во время поведения испытаний было замечено, что приемник имеет большую чувствительность к слабым сигналам, если к нему присоединить даже самый маломощный генератор, настроенный при этом на примерно ту же частоту, что и принимаемый сигнал. Этот генератор стали называть гетеродином, а сам приемных прозвали гетеродинным.
После изобретения кристаллического детектора в 1906-1908 годах и перехода на излучение незатухающих колебаний гетеродинный приемник пользовался наибольшей популярностью. Так как нестабильные контакты опилок заменил единственный контакт между металлическим острием и кристаллом полупроводника. Между кристаллическим детектором и современным полупроводниковым диодом существенных различий собственно и нет.
В те времена в антенном контуре колебания незатухающего характера получались при помощи разряда дугового, который поддерживал радиочастотные колебания, благодаря внесению в контур отрицательного сопротивления. Электромагнитные генераторы тогда широко использовались на сверхдлинных волнах.
Телеграфная радиолиния тех лет имела следующую картину:
где S1 – замыкающий цепь радиатора радиочастотных колебаний (G1) телеграфный ключ. Осуществляя прием детектора, в цепь происходило включение реле или телефонной трубки – B1. При этом слышался в телефоне только треск и помехи.
В приемнике происходило воздействие на детектор гетеродинного и входного сигналов, первый из которых значительно превосходил по амплитуде. При отличии частоты гетеродина G1 от G2 – частоты самого генератора – на VD1(выходе детектора) происходило разночастотное напряженное биение, которое значительно превышало продетектированный сигнал, повышая громкость и чувствительность приема. Так телеграфные сигналы тали звучать «морзянкой».
Схема гетеродина в приемнике имела такой вид:
Со временем эти приемники обросли доработками и вариациями. Приводим общую таблицу радиоприемных устройств, которые классифицированы по типу действия:
После того, как изобрели супергетеродин, этот генератор прозвали «геретодином».
Уникальные возможности современного гетеродина нашли себя в применении микропроцессоров, в самой обработке сигналов. Суть этого процесса заключается в преобразовании в цифровую форму сигнала при помощи АЦП и его поступление в цифровой процессор для дальнейшей фильтрации и демодуляции, и т.п.
Цифровая фильтрация нашла широкое применение в радиолокационных системах, сложных радиосистемах (космической, например).
Гетеродин входит в состав спутникового конвертера вместе с предусилителем LNA. Конвертер преобразует электромагнитные частоты Ku- и С-диапазона (10700-12750 и 3400-4200 МГц соответственно) в L-диапазон – промежуточную частоту (950-2150 МГц) для дальнейшей передачи до потребителя с малейшими потерями посредством коаксиального кабеля. Это устройство устанавливается на выносном кронштейне спутниковой антенны и применяется многими современными операторами спутниковой связи – «Триколор ТВ», «НТВ Плюс», «Hotbird». Конверторы могут быть цифровыми или обычными. Отличаются они друг от друга величиной фазового шума гетеродина. Для успешного приема спутникового сигнала рекомендовано применять гетеродин с нормированным фазовым шумом.
Для упрощения электрической схемы Ku-диапазона, его разбили на 2 части, которые можно выбирать при помощи переключения гетеродина. Частота гетеродина в этом случае представлена двумя величинами: 9750 МГц и 10600МГц, такой конвертер называется Full Band. По кабелю снижения в этом устройстве также осуществляется управление поляризация сигнала, который принимается. Для этого применяют управляющие сигналы: 13В для V, 18В для Н (вертикальной и горизонтальной поляризаций соответственно). Современную спутниковую связь невозможно представить без использования гетеродина.
Параметры гетеродина
Как мы уже знаем, гетеродины в приемниках предназначены для применения в составе смесителей для переноса спектра входного сигнала на более низкую частоту. От параметров гетеродинов зависит качество преобразованного сигнала и в общем случае параметры всего радиоприемного устройства в целом.
Основные параметры гетеродина:
Шаг перестройки гетеродина задается шириной радиоканала, принятой в системе связи, в составе которой будет работать приемник. Например, шаг перестройки гетеродина для стандарта сотовой связи GSM будет составлять 200 кГц.
Относительная нестабильность частоты — характеристика, показывающая отклонение частоты генератора (уход частоты) от номинального значения. Эта величина определяется отношением
где — уход частоты,
Различают кратковременную (например, за 1 секунду) и долговременную (например, за 1 год).
Пусть за 1 год уход частоты гетеродина с номинальной частотой 10 ГГц составляет 1 кГц. Тогда долговременная относительная нестабильность частоты будет равна:
при этом относительная нестабильность частоты будет равна:
Уход частоты при изменении напряжения питания (pushing) может быть минимизирован применением стабилизаторов напряжения.
Для уменьшения относительной нестабильности частоты от изменения нагрузки (pulling) на выходе гетеродина применяются развязывающие устройства (вентили) или буферные усилители, которые кроме этого обеспечивают требуемую мощность гетеродина.
Спектральная плотность мощности фазовых шумов характеризует кратковременную фазовую нестабильность частоты гетеродина за счет шумовых свойств генератора.
Перечисленные выше факторы приводят к тому, что в спектре выходного сигнала гетеродина мы видим не одиночную частотную составляющую, как нам хотелось бы, а целый спектр. Пример спектра гетеродина приведен на рисунке 1.
Рисунок 1. Спектр выходного сигнала гетеродина
Не следует при этом считать, что сигнал гетеродина во временной области будет сильно искажен. На рисунке 2 приведена временная диаграмма сигнала, спектр которого показан на рисунке 1.
Рисунок 2. Временная диаграмма выходного сигнала гетеродина
Как видно из этого рисунка, форма выходного колебания гетеродина практически не отличается от синусоидальной. Поэтому при оценке качества выходного сигнала гетеродина обычно рассматривается его спектр.
Как это уже обсуждалось при изучении особенностей работы смесителя, гармоники гетеродина при определенных условиях не оказывают влияния на перенос спектра принимаемого сигнала на промежуточную или нулевую частоту. Кроме того, они могут быть легко отфильтрованы. Поэтому в дальнейшем мы будем в основном оценивать шумовые характеристики гетеродина и его нестабильность.
Фазовый шум гетеродина
Важный механизм, который ограничивает динамический диапазон приемника это преобразование шумов гетеродина в тракт промежуточной частоты (Reciprocal mixing). Пример распределения плотности шумов гетеродина в зависимости от отстройки от генерируемой частоты приведен на рисунке 3.
Рисунок 3 — зависимость шумов гетеродина от отстройки от генерируемой частоты для микросхемы ADF4360-7.
На этом рисунке приведена зависимость, рассчитанная программой ADIsimPLL для синтезатора частот ADF4360-7. По оси Y отложена плотность шумов по отношению к основной гармонике гетеродина в логарифмическом масштабе:
где PPN — мощность фазовых шумов гетеродина;
Pг — мощность сигнала на выходе гетеродина.
В реальной схеме за счет неидеальности конструкции и источников питания, плотность шумов гетеродина в дальней зоне может оказаться еще хуже.
Фазовый шум гетеродина ничем не отличается от колебания на частоте настройки синтезатора. При взаимодействии с ним сигнал помехи преобразуется в промежуточную частоту, но так как преобразование производится с шумовым сигналом, то результат воспринимается как шум.
Это явление приводит к ухудшению отношения сигнал/шум на выходе приемника. Таким образом, используемые гетеродины должны иметь настолько низкий фазовый шум, чтобы при наличии сильной внеполосной помехи они создавали шумы, меньше уровня шума приемника.
Понравился материал? Поделись с друзьями!
Вместе со статьей «Параметры гетеродина» читают:
Частота гетеродина что это
Поскольку спутников много, а число градусов всей орбиты 360, то возможна ситуация, когда, спутники имеют близкие координаты. Не стоит думать, что они находятся друг возле дружки на небольшом расстоянии, на практике это делается для обеспечения большего числа транспондеров в одной точке. Количество спутников, с которых возможен прием сигнала, напрямую зависит от удаленности экватора. Геостационарная орбита с Земли для человека видна в виде дуги над горизонтом. Чем севернее широта, тем меньше дуга, а значит и видно меньше спутников. «Зона покрытия» является основной характеристикой по которой определяют наличие возможности принимать сигналы со спутника. Она часто имеет вид диаграммы (beam). У одного спутника могут быть несколько различных диаграмм в зависимости от количества разных транспондеров. К примеру, на спутнике Intelsat 707 (1 West) транспондеры направленны на Ближний Восток (у нас его не видно) и на Европу. Зона покрытия определяется при помощи «footprints» — это проекция диаграммы направленности «луча» спутника на географическую карту. На вид зоны покрытия изображены, как горизонтали на карте местности, где горизонталь — граница определенной мощности принимаемого сигнала (EIRP — Equivalent Isotropic Radiated Power). Как правило, они разделяются примерно следующим образом — 53 dbW, 50 dbW, 48dbW, 45 dbW и 40 dbW. Диаметр зависит от мощности сигнала, чем больше мощность, тем меньше нужен диаметр антенны.
Частота транспондера (transponder frequency)- основной параметр. Он делится на два основных диапазонах — Ku-Band и C-Band. Диапазон C (4GНz) используется отечественным и американским вещанием. Эту используют российские спутники. В особенности наиболее известный и популярный YAMAL 102,201 (позиция 90.0E). Диапазон Ku (10.700-12.750 GHz) распространен в Европе, в этом диапазоне и смотрят телевизионные передачи 95% зрителей. Современные отчественные спутники тоже начали оборудоватся транспондерами Ku-Band. Ku-Band делится в свою очередь на 3 поддиапазона: Ku-Telecom или Ku-BSS (Broadcast Satellite Services, 12.500-12.750 GHz); Ku-DBS (Direct Broadcast Services, 11.700-12.500 GHz); Ku-FSS (Fixed Satellite Services, 10.700-11.700 GHz, на текущий момент основная масса вещания).
Каждому транспондеру присваивается определенная частота в одном из указанных диапазонов.
Диапазоны спутникового телевидения
Общее для обоих диапазонов
Частота гетеродина. При применении универсальных конверторов задаётся LQ1=9750, для приёма верхнего LQ 2=10600. При использовании других типов конверторов могут использоваться другие частоты гетеродина, напр. 10000, 10750 и т.д. Частоту гетеродина можно определить по надписям на корпусе конвертора, к-я там тоже чаще всего имеет название LQ
Цифровые технологии
В наши дни широкое pаспростpанение получает спутниковое цифровое pадио- и теле- вещание. После того, как в начале 80-х произошел бум, вызванный появлением компакт-диска, на который был записан с применением цифровых технологий высококачественный звук. Многие компаний бросили свои силы на создание стандарта, позволявшего бы записывать и воспроизводить изображение в цифровом формате. При изучении технологии выяснилось, что для уменьшения объема информации достаточно воспроизводить не каждый кадр в отдельности, а только ИЗМЕHЕHИЯ, возникающие между предыдущем и последующем кадром. Различия между кадрами не значительны, по этому объем изменений не существенный, что позволило сэкономить количество передаваемой информации. Разработки привели к широко известному стандарту Motion Picture Experts Group (MPEG).
Стандарт MPEG-1 (вы найден в начале 80-х), часто его называют Video-CD имеет некоторые недостатки. Наличие большого числа артефактов в быстродействующих сценах. При выпуске фильмов в формате Video-CD приходилось корректировать сцены (взрывов, погонь, падений и т.д.), зачастую их просто урезали. Терялось преимущество перед VHS. На данный момент MPEG-1 уже не используется. Технический прогресс не стоит на месте и дальнейшим ученные разработали стандаpт MPEG-2, который был большим прорывом в перед. Изображение передается в безупречном чистом виде, цветопередача радует глаз, все оттенки имеют повышенную четкость. Звук отдельно заслуживает внимание, частота сэмплиpования 48kHz, самый музыкальный слух не поймает фальши. Встретить этот формат можно на каждом шагу – он используется при записи фильмов на DVD (Digital Video Disk) и базируется цифpове телевещания. Имеются некоторые подстандарты (DBS/DSS и DVB). DBS/DSS – нашли применение в США для вещания закрытых платных каналов. DVB (Digital Video Broadcasting), широко используется в Евpопе, Австpалии, Афpике, Азии, в последнее время и в Америке. Цифровые технологии дают нам в первую очередь безупречное изображение и звук. С технической точки зрения также возрастают возможности передавать большее число каналов. До этого на спутниковом тpанспондеpе (пердатчике), передающий один аналоговый канал можно передавать 8-10 каналов в цифровом формате с цифровым стереозвуком. Качественной скачок технологий позволил почти в десять раз снизить цену за аренду каналов на спутнике. Более того, добавились некоторые возможности, которые были ранее недоступны: теле текст и Electronic Program Guide