Частица что ускоряется в коллайдере
Частица бога, багет и Шива-разрушитель: 10 фактов о Большом адронном коллайдере
Горячий, как ранняя Вселенная, и холодный, как абсолютный ноль; намного точнее, чем швейцарские часы, но настолько хрупкий, что его можно сломать куском багета; поражающий обывателей и даже ученых своей мощью и известный юмором своих сотрудников. Все это про LHC, юбилею которого посвящает этот материал Indicator.Ru.
Большой адронный коллайдер (Large Hadron Collider, LHC) — гигантский и мощнейшый аппарат, в котором можно ускорять и сталкивать частицы-адроны (протоны и тяжелые ионы), чтобы изучать то, на что они распадутся. На строительство этого сооружения — самого сложного экспериментального устройства из существующих и самого огромного цельного механизма из когда-либо созданных человеком — было потрачено около шести миллиардов долларов. И это не считая уже имеющейся инфраструктуры Европейского центра ядерных исследований!
Главная цель работы LHC — поиск отклонений от Стандартной модели. Это одна из важнейших физических концепций, которая описывает современный мир, но не может пока объяснить гравитацию, темную материю и темную энергию. На коллайдере удалось открыть бозон Хиггса (неуловимую прежде «частицу бога»), а также обнаружить и подтвердить существование тетракварков и пентакварков. Официальный запуск LHC состоялся 10 сентября 2008 года, то есть сегодня у него день рождения! В честь этого мы расскажем о его необычных и неожиданных сторонах.
Факт 1: Откуда взялась аббревиатура CERN
Давайте перестанем путаться раз и навсегда. Все мы постоянно употребляем слово «CERN» или «ЦЕРН», но о расшифровке мало кто задумывается. Многие считают его калькой с английской аббревиатуры. Но как из названия организации, создавшей коллайдер, получить такую аббревиатуру? По-русски это Европейский центр ядерных исследований, по-английски — European Organization for Nuclear Research. Дело в том, что построен коллайдер вблизи Женевы, на границе Франции и Швейцарии, поэтому организация носит французское название, Conseil Européen pour la Recherche Nucléaire, от которого и пошла аббревиатура. Да и звучит CERN благозвучнее, чем какой-нибудь EONR или ЕЦЯИ.
Факт 2: Жарче 100 000 Солнц
Коллайдер очень горяч. Чтобы смоделировать условия, близкие к последствиям Большого взрыва, ученые ускоряют и сталкивают на нем два пучка тяжелых ионов, получая температуры в сотни тысяч раз больше, чем в центре Солнца. Благодаря тому, что в 2012 году в LHC смогли достичь температуры в 5,5 триллиона градусов, физикам удалось получить кварк-глюонную плазму — раскаленный «суп» из свободных строительных элементов материи, словно прямиком из недр новорожденной Вселенной. Плотность такого вещества была больше, чем плотность нейтронных звезд.
Факт 3: Ледяное притяжение
В коллайдере около 9600 супермагнитов, которые по силе в 100 000 раз превосходят притяжение Земли и помогают гонять протоны на околосветовых скоростях. Обмотки этих магнитов сплетены из 36 «струн» толщиной по 15 мм. Каждая «струна» состоит из 6-9 тысяч отдельных нитей из ниобий-титанового сплава, диаметр которых составляет 7 мкм.
Устройство LHC
Ускоритель — это установка для разгона пучков элементарных частиц; коллайдер — это такой тип ускорителя, в котором разгоняются два пучка частиц в противоположных направлениях и сталкиваются друг с другом. В русскоязычной терминологии коллайдер называют также ускорителем на встречных пучках.
С точки зрения научной задачи сам ускоритель выполняет только полдела — он лишь сталкивает частицы. Изучением результатов столкновения занимаются детекторы элементарных частиц — специальные многослойные установки, собранные вокруг точек столкновения. Иногда ускорителем называют тандем «ускоритель + детекторы»; в этом случае, если надо подчеркнуть, что речь идет именно об ускорителе, а не о детекторах, часто говорят «ускорительное кольцо». На этой страничке рассказывается именно об устройстве ускорительного кольца LHC.
Общий вид
LHC — циклический (то есть кольцевой) коллайдер; пучки протонов или ядер свинца циркулируют в нём непрерывно, совершая свыше 10 тысяч оборотов в секунду и сталкиваясь на каждом круге со встречным пучком. На рис. 1 показана схема расположения основных элементов ускорительного кольца LHC.
Всё кольцо LHC поделено на восемь секторов, границы которых отмечены точками от 1 до 8. На каждом участке (1–2, 2–3 и т. д.) стоят в ряд магниты, управляющие протонным пучком. Благодаря магнитному полю поворотных магнитов сгустки протонов не улетают прочь по касательной, а постоянно поворачиваются, оставаясь внутри ускорительного кольца. Эти магниты формируют орбиту, вдоль которой движутся протоны. Кроме того, специальные фокусирующие магниты сдерживают поперечные колебания протонов относительно «идеальной» орбиты, не давая им задевать стенки довольно узкой (диаметром несколько сантиметров) вакуумной трубы.
Внутри ускорителя идут рядом друг с другом две вакуумные трубы, по которым циркулируют два встречных протонных пучка, каждый в своем направлении. Эти две трубы объединяются в одну только в специально выделенных местах — в точках 1, 2, 5, 8. В этих точках происходят столкновения встречных протонных пучков, и именно вокруг них построены четыре основных детектора: два крупных — ATLAS и CMS, и два средних — ALICE и LHCb. Вблизи двух крупных экспериментов установлены также два специализированных мелких детектора — TOTEM и LHCf.
В точке 4 расположена ускорительная секция. Именно здесь протонные пучки при разгоне получают с каждым оборотом дополнительную энергию. В точке 6 находится система сброса пучка. Здесь установлены быстрые магниты, которые в случае необходимости уводят пучки по специальному каналу прочь от ускорителя. В точках 3 и 7 установлены системы чистки пучка; кроме того, эти места зарезервированы для возможных будущих экспериментов.
Протонные пучки попадают в LHC из предварительного ускорителя SPS. Линии передачи пучка (Tl2 и Tl8), соединяющие два этих кольцевых ускорителя вместе со специальными магнитами на каждом из них, составляют вместе инжекционный комплекс коллайдера LHC (от слова «инжекция» — впрыскивание пучка). Поскольку на SPS пучок крутится только в одну сторону, инжекционный комплекс состоит из двух линий и имеет несимметричный вид. В ускорительное кольцо SPS протоны попадают из источника через цепочку еще меньших ускорителей.
Магнитная система LHC
Как и любое тело, сгусток элементарных частиц, предоставленный сам себе, будет двигаться прямолинейно и равномерно. Для того чтобы удерживать его на круговой траектории внутри ускорителя (а также поддерживать от падения вниз под действием силы тяжести), требуется постоянно воздействовать на пучок магнитным полем.
На LHC для управления пучками используется несколько тысяч магнитов разного назначения. Именно они являются самой важной (и самой дорогой) частью ускорителя. Траекторией пучков управляют поворотные магниты, которые слегка разворачивают пролетающий сквозь них пучок и удерживают его внутри кольцевой вакуумной трубы. Имеются также фокусирующие магниты, не дающие пучку расплыться, и разнообразные корректирующие магниты. В точках инжекции и сброса пучка установлены специальные быстрые магниты.
Инжекционный комплекс
Протоны поступают в LHC из предварительного ускорителя SPS («Протонного суперсинхротрона»). Имеются две линии передачи пучка, которые отходят от SPS в двух местах и подходят к ускорительному кольцу LHC вблизи точек 2 и 8 (эти линии называются Tl2 и Tl8). Инжекционный комплекс — это сложное инженерное сооружение, работоспособность которого зависит не только от правильной настройки магнитной системы, но и от точной синхронизации ритма работы SPS и LHC.
Инжекция (то есть «впрыскивание») протонов в LHC происходит не непрерывно, а импульсами. Во время работы LHC линии передачи пустуют, а в предварительном ускорителе SPS накапливается очередная порция протонов. В конце каждого цикла работы LHC высокоэнергетический пучок сбрасывается, и коллайдер подготавливается к приему новой порции протонов. В течение нескольких минут следует серия импульсных включений и выключений быстрых магнитов на концах линии передачи протонов, в ходе которых протонные сгустки переводятся из SPS в LHC и один за другим выстраиваются на свои «позиции» в пучке, не мешая уже циркулирующим сгусткам.
Перед тем как попасть в SPS, протоны проходят через несколько ускорителей меньшего размера. Полный ускорительный комплекс ЦЕРНа описан на странице CERN accelerator complex (см. также краткую схему на рис. 2). Вначале с помощью ионизации протоны добываются из газообразного водорода, затем их разгоняют до энергии 50 МэВ в линейном ускорителе и впрыскивают в бустер PSB. Там протоны разгоняются до энергии 1,4 ГэВ, переводятся в протонный синхротрон PS, ускоряются до 25 ГэВ и только после этого попадают в SPS. В нём они разгоняются до 450 ГэВ и инжектируются в LHC. Похожую последовательность ускорителей проходят и ядра свинца, правда в их случае есть специфика, связанная с нагревом и атомизацией свинцового образца и ионизацией атомов.
Ускорительная секция
Протоны впрыскиваются в LHC на энергии 0,45 ТэВ и ускоряются до 7 ТэВ уже внутри основного ускорительного кольца. Этот разгон происходит во время пролета протонов сквозь несколько резонаторов, установленных в точке 4.
Резонатор представляет собой полую металлическую камеру сложной формы (см. рис. 3), внутри которой возбуждается стоячая электромагнитная волна с частотой колебаний примерно 400 МГц. Эффективное и однородное ускорение всего пучка переменным полем оказывается возможным благодаря тому, что весь пучок разбит на отдельные сгустки, следующие на строго определенном расстоянии друг за другом. Когда сгусток протонов пролетает сквозь резонатор, электромагнитное колебание находится как раз в такой фазе, чтобы электрическое поле вдоль оси пучка подталкивало протоны вперед.
Фаза колебания поля в резонаторе настроена так, что в момент пролета частиц электрическое поле не максимально, а нарастает. Так делается для того, чтобы автоматически выравнивать энергию ускоряемых частиц. Если какой-то протон случайно оказался более энергичным, чем соседи, он вырывается вперед и на следующем круге приходит в ускоряющую камеру с небольшим опережением. Из-за этого он получает чуть меньше добавочной энергии, чем остальные протоны. И наоборот, если протон случайно потерял немного энергии и оказался в хвосте своего сгустка, то при следующем пролете через ускорительную секцию он получил побольше энергии. Это свойство сгустка частиц называется автофазировкой.
Ускорение протонов с энергии инжекции 0,45 ТэВ до 7 ТэВ происходит довольно медленно, примерно за 20 минут. Скорость этого процесса ограничена вовсе не мощностью ускорительной секции, а скоростью усиления магнитного поля в поворотных магнитах — ведь оно должно расти синхронно с энергией частиц для того, чтобы удерживать их в вакуумной трубе неизменного радиуса.
Колебания электромагнитного поля в резонаторе порождают сильные токи, текущие по поверхности камеры. Для того чтобы избежать тепловых потерь энергии, резонаторы на LHC тоже работают в сверхпроводящем состоянии при температуре 4,5 К (–268,7°C). Впрочем, внутренняя поверхность резонатора не идеальна и неизбежно содержит маленькие дефекты, на которых выделяется тепло. Но поскольку резонаторы сделаны из меди, это тепло быстро отводится.
Система сброса пучка
Протонный пучок на полной энергии и интенсивности обладает большой разрушительной силой (представьте себе энергию летящего реактивного самолета, сфокусированную в поперечнике меньше миллиметра). В норме пучок циркулирует внутри вакуумной камеры и не задевает аппаратуру. Однако если в управляющей магнитной системе произойдет сбой или траектория пучка слишком сильно отклонится от расчетной, пучок станет опасен, и его нужно будет быстро сбросить. Кроме того, сброс ослабевшего пучка надо делать каждые несколько десятков часов и при нормальной работе ускорителя.
Всем этим занимается специальная система сброса пучка, установленная в точке 6. В ней размещены специальные быстрые магниты, которые при необходимости включаются в считанные микросекунды и слегка отклоняют пучок. В результате протоны сходят с круговой орбиты, затем пучок дефокусируется, по специальному каналу уходит прочь от ускорителя и в отдельном зале безопасно поглощается массивными карбон-композитными блоками (блоки от этого сильно нагреваются, но не плавятся).
Вакуумная и криогенная техника, система контроля и безопасности
Для того чтобы протонные пучки могли свободно циркулировать в LHC, внутри ускорительной трубы создан сверхглубокий вакуум. Давление остаточных газов составляет порядка 10 –13 атм. Однако даже при таком низком давлении время от времени происходит столкновение протонов с молекулами остаточного газа, что сокращает время «жизни пучка» до нескольких дней.
Несмотря на то что вакуумная труба небольшая, радиусом примерно 5 см, она очень длинная, так что полный объем, подлежащий вакуумированию, сопоставим с крупным зданием. Кроме того, из-за многочисленных контактов и соединений, а также из-за большой площади внутренней поверхности вакуумной камеры задача по поддержанию нужного вакуума оказывается очень непростой.
Еще одной важной частью инфраструктуры ускорителя является криогенная система, охлаждающая ускорительное кольцо. Она поддерживает в поворотных магнитах (а также в некоторых других элементах) температуру 1,9 К (то есть –271,25°C), при которой сверхпроводник безопасно держит нужный ток и создает требуемое магнитное поле. Для поддержания рабочей температуры ускорителя используется уникально высокая теплопроводность сверхтекучего гелия. По гелиевому каналу на LHC можно передавать киловатты теплового потока при перепаде температур всего 0,1 К на расстоянии в километр!
Криогенная система на LHC многоступенчатая. Для охлаждения используется 12 миллионов литров жидкого азота и почти миллион литров жидкого гелия. LHC в ходе работы будет потреблять 2-3 грузовика жидкого азота и порядка 500 литров жидкого гелия в день.
В точках 3 и 7 расположены устройства для «чистки» пучка. Когда протонный пучок движется внутри вакуумной трубы, то протоны колеблются в поперечной плоскости, и некоторые из них могут отклониться от идеальной траектории довольно далеко. Такие «блуждающие» протоны (на языке физиков — «гало пучка») могут задеть стенки вакуумной трубы или аппаратуру. Даже если это будет ничтожная доля от всего протонного пучка, они могут локально нагреть или даже повредить аппаратуру. Например, локальное энерговыделение всего в несколько сотых долей джоуля на кубический сантиметр способно вызвать переход поворотного магнита из сверхпроводящего в нормальное состояние, что приведет к срочному сбросу пучка.
Система чистки пучка механическим образом отсекает гало пучка. Для этого в непосредственную близость к пучку (на расстояние всего пару миллиметров!) придвигаются массивные блоки — «челюсти» коллиматора. Они поглощают «блуждающие» протоны, но не мешают основной части пучка. Впрочем, «отсеченные» протоны тоже небезопасны — они сильно нагревают материал коллиматора, а также порождают на нём поток частиц более низкой энергии («вторичное гало»), которое тоже приходится отсекать вторичными коллиматорами.
Большой адронный коллайдер впервые ускорил атомы
Maximilien Brice /Julien Ordan / CERN
Большой адронный коллайдер впервые ускорил атомы — ядра свинца, связанные с одним электроном. Ученым удалось продержать пучок атомов внутри ускорителя 40 часов. До этого коллайдер работал только с ионами и частицами — протонами, ядрами ксенона и ядрами свинца. Новый «модус» работы ускорителя позволит превратить его в источник фотонов очень высоких энергий, сообщает Европейская организация по ядерным исследованиям (ЦЕРН).
Обычно на Большом адронном коллайдере (БАК) разгоняют пучки протонов. В ускорителе они «набирают» огромную энергию (порядка десяти тераэлектронвольт), а затем сталкиваются, а ученые наблюдают за рождением новых частиц-осколков. Это позволяет уточнить массу известных частиц, которые возникают в промежуточных реакциях (например, W-бозонов), проверить общепринятые теоретические модели и установить ограничения на параметры новых теорий, которые призваны объединить Стандартную модель и Общую теорию относительности. Разумеется, с тем же успехом БАК может сталкивать и другие заряженные частицы — в электромагнитных полях, создаваемых системой магнитных катушек, частицы будут ускоряться так же, как и протоны. Все, что для этого требуется — пересчитать напряженность полей, чтобы заставить частицу оставаться внутри ускорителя. Каждый год ученые уделяют немного времени работы коллайдера, чтобы провести такие «нетипичные» столкновения и обработать их результаты.
В прошлую среду (25 июля) БАК впервые использовал в качестве такой частицы «атом» — ядро свинца, связанное с единственным электроном. Конечно, такие «атомы» сильно отличаются от обычных, электронейтральных атомов свинца, которые содержат 82 электрона. Тем не менее, это большое достижение для коллайдера, так как удержать атомы целыми во время ускорения очень сложно — чтобы разогнать частицу, необходимо сообщить ей большое количество энергии, которая легко может оторвать электрон от ядра и разрушить атом. Когда это происходит, заряд частицы резко вырастает, сила Лоренца увеличивается, движение частицы перестает быть синхронизированным с напряженностью поля ускоряющих катушек, и она врезается в стенку коллайдера. До сих пор ученые не могли удержать атомы целыми при ускорении на БАК, хотя другим ускорителям (например, RHIC) это удавалось.
В ходе первого эксперимента исследователи разогнали 24 группы атомов до сравнительно низких энергий и продержали их в коллайдере в течение часа. Затем ученые включили катушки на полную мощность и через две минуты сбросили пучок — атомы стали слишком часто терять электроны и врезаться в стенки коллайдера, и физикам пришлось завершить эксперимент, чтобы не повредить установку. В следующем опыте ученые уменьшили число атомов в четыре раза, что позволило им увеличить время удержания до сорока часов. Это оказалось даже больше, чем предсказывали теоретические расчеты. В настоящее время ученые думают, можно ли оптимизировать установку таким образом, чтобы оставить продолжительность удержания на достигнутом уровне при увеличении мощности пучка.
Ученые надеются, что в будущем опыты с атомами позволят превратить БАК в «гамма-фабрику» (gamma factory) — источник фотонов с очень высокими энергиями. В самом деле, если посветить на ускоряемые атомы лазером, часть из них перейдет в возбужденное состояние, а затем вернется в основное, параллельно испуская фотон. В собственной системе отсчета, связанной с атомом, энергия фотона будет небольшой, однако в лабораторной системе отсчета, связанной с неподвижными наблюдателями, энергия фотона вырастет на много порядков из-за эффекта Доплера. В свою очередь, высокоэнергетические фотоны будут превращаться в частицы обычной и темной материи, и с их помощью можно будет проверить некоторые теоретические модели, предсказывающие ненулевое сечение взаимодействия вимпов и фотонов.
Ранее Большой адронный коллайдер несколько раз работал с ядрами тяжелых элементов, но не с атомами. Например, в октябре 2017 года ускоритель в течение восьми часов сталкивал ядра ксенона, чтобы исследовать образование кварк-глюонной плазмы.
Как ученые разгоняют частицы в адронном коллайдере? И что происходит при столкновении частиц?
Пожалуй, напишу как БАК работает вообще.
Вообразите себе обычный баллон со сжатым водородом. Вроде бы мелочь, но именно с него начинается работа самого большой ускорителя элементарных частиц в мире.
Атомы водорода поступают в камеру подачи линейного ускорителя строго отмеренными порциями. Там от от них отделяют электроны( отрицательно заряженные элементарные частицы) оставляя только ядра водорода- протоны (положительно заряженные элементарные частицы). Как раз это положительный заряд позволяет давать им ускорение при помощи электрического поля. Дальше их сталкивают друг с другом, чтобы выделить большой объём энергии. Кстати, эта модель повторяет те действия, которые происходили в момент Большого Взрыва. После протоны отправляют в линейный ускоритель. На выходе отсюда протоны будут двигаться со скоростью, равной 1/3 скорости света. Это всё первый этап.
Теперь они готовы к второму этапу- попаданию в бустерЧастицы разделяют на 4 части, что максимально увеличить плотность их потока. Каждая часть поступает в отдельное кольцо бустера. Длина каждого кольца 137 м. Здесь применено круговое движение, поскольку линейное уже не эффективно. Чтобы придать большую скорость, частицы проходят по кругу много раз, причём на них воздействуют пульсирующим электрическим полем. Нужное направление регулируют магнитами, мощное излучение удерживают их на этой траектории. Здесь их разгоняют до 91,6% скорости света, собирая их в плотный пучок.
После этого частицы из всех четырёх колец собираются вместе и поступают в фотонный синхротрон. Это наша третья ступень. Что же будет происходить с двумя такими порциями протонов? Длина синхротрона 628 м. Это расстояние протоны проходят за 1,2 секунды разгоняясь до 99.9% скорости света. Классно, неправда ли? Именно здесь достигается точка перехода. К энергии движения частиц прибавляется энергия электрического поля, но дальше частицы разгонятся почти не могут, запрещено природой.Но за счёт этого увеличивается масса протонов. Поэтому они не разгоняются, а становятся тяжелее. Кинетическая энергия( грубо, говоря, энергия движения, которая учитывает массу/скорость) измеряется в электрон вольтах. На этом этапе энергия каждой частицы равняется примерно 25 млрд. эВ, а масса протонов в 25 раз тяжелее, чем в состояние покоя.
И так мы плавно перешли уже к четвёртая стадия- протонный супер синхротрон. Огромное 7-ми километровое кольцо. Его задача принять протоны с таким запасом энергии и увеличить его до 450 млрд.
Через некоторое время частицы будут готовы к перемещению в Большой Адронный Коллайдер. Это самая интересная, пятая часть. Расположен он на границе Франции и Швейцарии, в Европейских Альпах. БАК расположен глубоко под землёй и растянут на 27 км. В нём проложены 2 вакуумных трубы. По ним в противоположном направлении движутся пучки протонов. С помощью специальных устройств новые порции протонов поступают так, чтобы не мешать уже загруженным. Эти трубы пресекаются в четырёх точках, где стоят детекторы. Здесь протоны пересекаются друг с другом. При столкновения энергия каждого пучка увеличивается в двое. Детекторы позволяют учёным следить за изменениями в местах столкновений. За полчаса в БАК поступают около 2800 порций частиц. Все это время коллайдер придаёт нашим частицам энергии.Каждую секунду, протоны проходят это круг более 11 тысяч раз (27км, между прочим!), постоянно получай импульсы электрического поля. Энергия каждого протона составляет уже 7 тера эВ, а масса в 7000 раз больше состояния покоя. Круговое движение сохраняет всё тоже магнитное поле. Оно так велико, что его электро магниты должны выдерживать электро ток силой в 12 тысяч ампер. А всё благодаря прекрасному охлаждению, в результате которого магниты становятся сверх проводимыми.
Теперь протоны готовы к столкновению. Магниты регулируют нужную траекторию. Общая энергия двух сталкивающихся протонов равна 14 тера эВ. Это всплеск наблюдается в течении 2-ух секунд после столкновения. Траектория выделившихся в результате частиц анализируются компьютерами, к которым подключены детекторы.
Теперь вы знаете как работает самое огромный, дорогой и самое крутой научный прибор в мире.
Большой адронный коллайдер — главный инструмент современных физиков
статьи | Jul 02, 2019 | Наука и Образование | 1718
Как устроен Большой адронный коллайдер, зачем его построили и для чего снова модернизируют?
Исследование законов, которые лежат в основе существования нашей Вселенной, — сложнейшая задача, над которой ученые бьются с античных времен. Человечество всегда занимали вопросы: из чего состоит окружающий мир? Как устроена материя на самом мелком уровне и есть ли у вещества вообще предел делимости?
Демокрит считал, что материя состоит из мельчайших неделимых частиц — атомов, форма которых определяет свойства вещества. Собственно говоря, с древнегреческого слово «атом» и переводится как «неделимый». Мы до сих пор используем этот термин, хотя уже давно знаем, что атомы состоят из ядра и вращающихся вокруг него электронов, а ядро состоит из протонов и нейтронов, которые, в свою очередь, распадаются на кварки. На этом уровне привычная нам ньютоновская физика уже не работает, и частицы взаимодействуют по законам квантовой механики.
Как же изучать объекты, размеры которых настолько малы, что рассмотреть их не поможет никакое, даже самое мощное увеличение? Ведь любой микроскоп сам состоит из атомов.
Для того чтобы понять, как устроены элементарные частицы, из чего они состоят и каким воздействиям подвержены, ученые ускоряют их до огромных скоростей, а затем сталкивают. В результате столкновения на короткое время происходит расщепление частиц, и с помощью специальных детекторов можно зафиксировать отдельные составляющие, на которые распались изначальные частицы. Таким образом ученые изучают свойства уже известных элементарных частиц, а также открывают новые.
Знаменитый бозон Хиггса, существование которого было теоретически обосновано еще в 1964 году, после многолетних экспериментов удалось обнаружить с помощью Большого адронного коллайдера (БАК) в 2012 году.
БАК — самый масштабный международный проект в области науки, который помогает физикам экспериментально проверять теоретические модели устройства материи и Вселенной. Строительство БАК было начато в 2001 году. В 2008 году коллайдер был испытан и сдан в эксплуатацию. В 2010–2012 годах прошел первый полноценный сеанс работы БАК. После этого ускоритель модернизировали в течение двух лет. В обновленной комплектации он проработал до конца 2018 года. Сейчас в ЦЕРНе (Европейская организация по ядерным исследованиям) идут работы по очередному апгрейду, благодаря которому физики планируют существенно увеличить эффективность установки.
Что такое Большой адронный коллайдер?
С английского collider можно перевести как «сталкиватель». В БАК разгоняют протоны, нейтроны и другие тяжелые ядра, подверженные сильному ядерному взаимодействию. Этот класс частиц называется адронами — отсюда и название ускорителя.
На сегодняшний день БАК является самым большим ускорителем частиц. Он был построен в ЦЕРНе на месте предыдущего ускорительного комплекса — электрон-позитронного коллайдера. В работе БАК, а также в его обслуживании принимает участие более 10 тысяч человек по всему миру — это инженеры и ученые, работающие непосредственно в ЦЕРНе, а также огромное количество исследователей более чем из 100 стран.
Основная часть установки расположена на территории Швейцарии и Франции, в кольцевом тоннеле, длина окружности которого достигает почти 27 км. В тоннеле, проложенном на глубине около 100 метров, находятся две вакуумные трубы, в которых во время экспериментов в противоположных направлениях вращаются разогнанные пучки частиц. Частицы не должны задевать стенки труб, диаметр которых всего несколько сантиметров. Для этого их траекторию контролируют мощнейшие фокусирующие магниты. Для разгона частиц служит ускорительная секция, магниты которой с каждым оборотом протонного пучка придают ему дополнительную энергию. Специальная система сброса пучка в случае необходимости быстро уводит частицы из основного канала ускорителя в боковой.
Разогнанные пучки вращаются в трубах ускорителя со скоростью более 10 тысяч оборотов в секунду. Энергия столкновения провоцирует расщепление частиц на более мелкие составляющие. Для проведения экспериментов необходимо не только разогнать и столкнуть частицы, но и зафиксировать результаты столкновения. Эту задачу выполняют специальные детекторы элементарных частиц, расположенные в местах пересечения вакуумных труб. Часто для краткости под ускорителем подразумевают не только саму установку для разгона и стабилизации траектории пучков, но и детекторы.
Схема адронного коллайдера
Первичный разгон пучков происходит в относительно небольшом кольце SPS. Затем частицы попадают в основной канал ускорителя.
Основное кольцо поделено на восемь секторов. Вакуумные трубы пересекаются в точках 1, 2, 5, 8 (см. рисунок). В этих точках располагаются детекторы, регистрирующие результаты столкновения частиц. Основных детектора — четыре: крупные ATLAS и CMS и два средних: ALICE и LHCb. Также на БАК установлены еще два небольших специализированных детектора около ATLAS и CMS — это TOTEM и LHCf.
Зачем нужен адронный коллайдер
БАК способен удивить любого масштабом проекта, однако человеку, далекому от науки и технологий, может показаться непонятным, для чего нужна вся эта громадная установка, стоящая миллиарды долларов, если она не приносит непосредственных практических результатов.
Неужели один эксперимент настолько важен?
При том, что коллайдер объединяет усилия и опыт множества людей, результатами испытаний пользуются различные научные группы по всему миру. Так что одни и те же данные могут помочь в исследованиях ученым, работающим в разных направлениях современной физики.
The eight toroid magnets can be seen surrounding the calorimeter that is later moved into the middle of the detector. This calorimeter will measure the energies of particles produced when protons collide in the centre of the detector.
Кроме того, БАК — это сложнейший комплекс, включающий в себя ускоритель, детекторы, вспомогательные помещения. Строго говоря, отдельный эксперимент происходит на каждом детекторе, каждый из которых предназначен для своих задач, и все они собирают различные данные. Так что на ускорителе проходит не один эксперимент, а сразу несколько, а полученные данные используют тысячи ученых по всему миру.
Польза фундаментальных исследований
Фундаментальные исследования обычно не подразумевают сиюминутной выгоды и готовых прикладных решений. Новые разработки на базе научных открытий могут появиться спустя годы, а роль огромного количества научных результатов вовсе не в практической пользе. Вообще говоря, первостепенной задачей науки является построение цельной, доказанной модели. Если эксперименты опровергают теорию, которая главенствовала до этого, ученым приходится искать новое обоснование, объясняющее научные факты, и строить новую теорию.
Эксперименты на БАК позволяют проверить справедливость теории, носящей название Стандартной модели, которая описывает электромагнитное, слабое и сильное взаимодействие всех элементарных частиц, однако не объясняет существование гравитации, темной материи и темной энергии. Логика экспериментов на коллайдере такая: наблюдая эффекты столкновения протонных пучков, ученые стараются зафиксировать любые, даже самые незначительные отклонения от Стандартной модели. Эти результаты должны помочь построить так называемую Новую физику, в которой будет обобщенная теория, объясняющая все виды фундаментальных взаимодействий. Говоря простым языком, если нам удастся построить такую теорию всего, то, располагая достаточными вычислительными ресурсами, мы сможем точно просчитать и предсказать любой физический процесс.
За годы работы БАК ученые обнаружили бозон Хиггса и другие частицы, подробно описали некоторые процессы, происходящие при распаде частиц, и получили ряд других значительных результатов. Все эти научные открытия вносят вклад в общее знание физиков о Вселенной. Часть этих знаний поможет создать новые технологии, использующие законы природы на благо человека.
Кстати, большинство ученых занимается наукой не потому, что хотят придумать нечто полезное и практичное для общества. Эти люди влюблены в свое дело и обожают решать сложные задачи. Так что наука ради науки — это очень мощная мотивация.
Зачем изучать элементарные частицы?
Пытаясь проникнуть на все более мелкие уровни организации материи, исследователи постоянно натыкаются на все новые и новые преграды. К началу XX века сложилось представление о том, что атомы состоят из положительно и отрицательно заряженных частиц. Потом стало понятно, что плотное ядро занимает совсем небольшой объем атома где-то в центре, а вокруг ядра как-то распределены электроны. Постепенно ученые пришли к современной квантово-механической модели атома. Каждый новый шаг требовал новых экспериментов.
Следующий этап развития физики — полноценное изучение законов, по которым существуют элементарные частицы вроде кварков и нейтрино.
Кстати, уже сегодня есть и прикладные результаты этих исследований. Например, изучение элементарных частиц помогает разрабатывать такие способы борьбы с онкологическими заболеваниями, как адронная терапия раковых опухолей, позитронно-эмиссионная томография и другие технологии.
БАК — это микроскоп для элементарных частиц
Если физики изучают настолько маленькие объекты, зачем им такая огромная установка для экспериментов? Такой вопрос вполне может возникнуть у некоторых обывателей.
Дело в том, что, чтобы зафиксировать элементарные частицы, необходимо увеличить их энергию, чтобы они были «более заметны» для детекторов. Для того чтобы этого добиться, и необходим огромный комплекс БАК. Кроме того, надо помнить, что в этот комплекс также входит огромное количество оборудования, стабилизирующего траекторию частиц, и других вспомогательных установок.
Энергия частиц на БАК аналогична разрешающей способности микроскопов, которая ограничена длиной световой волны.
Оправданны ли такие дорогие эксперименты?
Цена экспериментов на БАК тоже может показаться огромной. Разумно ли тратить такие деньги (миллиарды долларов) на фундаментальную науку, если можно на них сделать нечто полезное и необходимое для обычной жизни? Ведь страны — участницы проекта вкладывают в исследования деньги налогоплательщиков.
На самом деле такие траты, конечно же, оправданны. Дело в том, что если бы эти деньги пошли не на коллайдер, то их направили бы в другие научные исследования, ведь каждая из стран выделяет средства из той части бюджета, которая и предназначена для науки. Однако БАК, безусловно, наиболее эффективная система, которая позволяет получить уникальные данные. Так что лучше вложиться в большой международный проект и потом пользоваться результатами экспериментов, чем создавать десять менее дорогих, но и менее эффективных проектов.
Уничтожит ли коллайдер Вселенную?
Вокруг БАК существует огромное количество мифов, среди которых есть и утверждение, что ускоритель способен уничтожить нашу планету или даже всю Вселенную.
Обоснование этого мифа строится на теории о том, что Вселенная, в которой мы живем, нестабильна, а столкновения на коллайдере могут породить более стабильную версию Вселенной, которая начнет разрастаться и разрушать нашу версию.
Опровергнуть подобные суждения довольно просто. Ведь во Вселенной постоянно происходят естественные процессы, которые ускоряют и сталкивают бесчисленное количество частиц с энергиями, которые на БАК просто недостижимы. И если бы существовала малейшая вероятность, что подобные столкновения приведут к «вселенской катастрофе», то это уже давно бы случилось.
Перезагрузка
В конце 2018 года все эксперименты на БАК были остановлены, и команда инженеров начала масштабный апгрейд системы. Целью усовершенствований является создание Большого адронного коллайдера высокой светимости. Проще говоря, будут усовершенствованы системы разгона, столкновения и детекции частиц для большей эффективности запусков ускорителя. Адронный пучок в новой версии коллайдера будет гораздо плотнее, а значит, увеличится и вероятность столкновения отдельных частиц. После столкновений будет получаться большее количество «обломков» элементарных частиц, детекторы станут регистрировать еще больше событий, и вероятность обнаружить новые частицы существенно увеличится.
Коллайдер высокой светимости проработает с начала 2021-го до конца 2023 года. Затем последует следующий этап модернизации для повышения светимости еще в 5–7 раз. Следующий сеанс эксплуатации будет начат в 2026 году.
Пока что точно просчитан план эксплуатации и усовершенствования ускорителя до 2034 года. Однако сейчас ЦЕРН работает над разработкой проекта FCC (Future Circular Collider), то есть коллайдера будущего, который разместится в том же тоннеле.